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Forecasting National Recessions of the United States with State-Level Climate Risks: 
Evidence from Model Averaging in Markov-Switching Models 

 Oguzhan Cepni*, Christina Christou** and Rangan Gupta*** 
 

Abstract 
This paper utilizes Bayesian (static) model averaging (BMA) and dynamic model averaging 
(DMA) incorporated into Markov-switching (MS) models to forecast business cycle turning 
points of the United States (US) with state-level climate risks data, proxied by temperature 
changes and its (realized) volatility. We find that forecasts obtained from the DMA 
combination scheme provide timely updates of the US business cycles based on the information 
content of the metrics of state-level climate risks, particularly volatility of temperature, relative 
to the corresponding small-scale MS benchmarks that use national-level values of climate 
change-related predictors. 
 JEL Codes: C22, C53, E32, E37, Q54 
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averaging 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                             
* Copenhagen Business School, Department of Economics, Porcelænshaven 16A, Frederiksberg DK-2000, 
Denmark. Email address: oce.eco@cbs.dk. 
** Corresponding Author. School of Economics and Management, Open University of Cyprus, 2252, Latsia, 
Cyprus. Email address: christina.christou@ouc.ac.cy. 
*** Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. Email 
address: rangan.gupta@up.ac.za. 



2 
 

1. Introduction 

A growing literature tends to highlight the role of regional variables in driving aggregate-level 
business cycles in the United States (US; see Beraja et al. (2019) for a detailed review). In light 
of the growing role of global warming, recent studies have also indicated the importance of 
risks associated with climate change, as captured by both first- and second moments of 
temperature changes, in driving state-level economic variables of the US (Colacito et al., 2019; 
Sheng et al., 2022a), as well as its associated uncertainties (Sheng et al., 2022b), which is likely 
to feed back again into the regional predictors (Mumtaz, 2018; Mumtaz et al., 2018). Against 
this backdrop, we aim to compare the ability of temperature changes and its volatility of the 
aggregate US, with the corresponding values of the same at the state-level, in forecasting 
national-level US recessions.1  Since state-level employment growth has already been shown 
to outperform commonly used set of national predictors in forecasting recessionary periods of 
the overall US (Owyang et al., 2015; Guérin and Leiva-León; 2017), we expect that state-level 
climate risks will also serve to be more informative than those measured for the aggregate US 
in forecasting national recessions. This presumption is driven by the recent evidence of 
heterogeneity detected in the underlying property of persistence in temperature across the US 
states (Gil-Alana, forthcoming), which in turn is likely to capture better the non-synchronous 
state-level business cycles (Owyang et al., 2005; Hamilton and Owyang, 2012). 

As far as the econometric framework is concerned, we follow Guérin and Leiva-León (2017) 
and utilize the Markov-switching framework with Dynamic Model Averaging, which provides 
a time-varying flexible framework that evaluates the performance of different Markov-
switching models to infer the regimes of a target variable. Comparisons are also made with 

                                                             
1 Theoretically heightened climate risks are likely to be recessionary via adversely impacting not only labour 
productivity and capital quality, but also through the patent obsolescence channel, which in turn, dampens research 
and development (R&D) expenditure growth (Donadelli et al., 2017, 2021a, b, 2022). In other words, climate 
risks can negatively impact the economy from both the demand- and supply-side of the economy. 
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Bayesian (static) Model Averaging (BMA). Guérin and Leiva-León (2017) used this 
framework successfully in forecasting national recession with state-level non-farm 
employment growth. We aim to conduct a similar analysis, for the first time, by delving into 
the role of state-level climate risks, i.e., temperature changes and its volatility over the monthly 
period of January, 1971 to March, 2022. 

The remainder of the paper is organized as follows: Section 2 outlines the econometric model, 
with Section 3 presenting the data and results, and Section 4 concluding the paper. 

2. Econometric framework 

Following Guérin and Leiva-León (2017), we first consider the following univariate regime-
switching model: 

= + + + ,                                                            (1) 

where the dependent variable  is the U.S. industrial production, the regressor  denotes the 
temperature indicator of state   ( = 1,2, … ), the error term is assumed to be normally 
distributed ~ (0, ), and  is a standard Markov chain with a constant transition 
probability = = | =  , ∑ , ∀ . That is, we have K different models 

, = 1,2, … ,  with each one of them attempting to explain the U.S. national indicator . 

2.1. Bayesian model averaging 

Since we are interested in comparing different models, we use Bayes’ rule to calculate the 
posterior model probability as the degree of support of model k: 

(  ) =  ( )
∑  , = 1,2, … , .                                                       (2) 
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Guerin and Leon (2017) refer to (  ) in Eq. (2) as the likelihood-based static weighting 
scheme. Given that the goal of the econometric analysis is to predict the discrete variable  ,  
Guérin and Leiva-León (2017) use Bayes’ rule to derive a probability statement about the most 
appropriate model  to explain the regimes  as follows: 

( / , ) = ( /  , ) ( , ) ( )
∑ /  , / = ( , ) ( )

∑ / ,         (3) 

where the inverse quadratic probability score QPS is used to evaluate the term  ( /  , ) 
which expresses model’s k ability to fit . The QPS of model k is defined as follows: 

= ∑ = 1/ − , 

where the lower the QPS,  the better the ability of model k to fit . Guérin and Leiva-León 
(2017) call ( / , ) in Eq. (3) the combination-based static weighting scheme. 

Lastly, Guérin and Leiva-León (2017) argue that since one is interested only in assessing the 
ability of the model  to predict the regimes , conditioning on  could be avoided. Then, 
the posterior probability model can be written as: 

( / ) = ( )
∑ ,                                                                                                       (4) 

which defines the QPS-based weighting scheme. 

2.2. Dynamic model averaging 

Guérin and Leiva-León (2017) introduce an algorithm to use dynamic model averaging to 
combine forecasts from K different Markov-switching models. The algorithm consists of four 
steps carried out at any given time period t, as follows:   

Step 1: Calculate the predicted regime probabilities for any model k ( = 1,2, … , ):  
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= / = = , = / 

= = / = = /                                                       (5) 

Step 2: Use the forgetting factor  as in Raftery et al. (2010) to calculate the predicted 
probability associated with the kth model: 

( / ) = ( = / )
∑ ( = / ) .                                                                                 (6) 

Step 3: Calculate the updated regime probabilities of any model k 

= / = ∑ = , = / ,                                                                          (7)  

where, 

= , = / = / = , = , = , = / 
( / ) , 

/ = , = ,  is the conditional likelihood from the corresponding model and 
( / ) is the predictive likelihood.  

Step 4: Calculate the predictive likelihood: 

( = / ) = ( = / ) ( / )
∑ ( = / ) ( / ).                                                                     (8) 

Lastly, repeat the four steps for each model k, where = 1,2, … , , at each period of time =
1,2, … , . 

Guérin and Leiva-León (2017) refer to ( =  ) in Eq. (8) as the likelihood-based 
dynamic weighting scheme.  
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In line with the BMA approach described in section 2.1, Guérin and Leiva-León (2017) 
introduce two more dynamic weighting schemes by updating Eq. (8); the combination-based 
and the QPS-based.  For the combination-based dynamic averaging scheme, Eq. (8) is replaced 
by: 

( = / ) = ( = / ) ( / ) / ,
∑ ( = / ) ( / ) / ,

,                                                         (9) 

While for the QPS-based dynamic averaging scheme, Eq. (8) is replaced by: 

( = / ) = ( = / ) / ,
∑ ( = / ) / ,

.                                                                            (10) 

3. Data and empirical results 

We now turn our attention to the main focus of the paper, i.e., the comparative analysis of 
national- and state-level climate risks for out-of-sample forecasting of US business cycle 
turning points over January, 1971 to March, 2022. For our analysis, the national level data 
involves the seasonally-adjusted industrial production index and the National Bureau of 
Economic Research (NBER) recession dummy, both derived from the FRED database of the 
Federal Reserve Bank of St. Louis. Regarding the national and state-level climate risks data, 
daily data on the temperature in degrees Fahrenheit are obtained from Bloomberg. We then 
compute year-on-year changes in the daily temperature to remove seasonal patterns and then 
average over a month to get the measure for changes in monthly temperature. As far as 
volatility is concerned, we sum the square of year-on-year changes in the daily temperature 
over a month, in line with the idea of realized volatility of Andersen and Bollerslev (1998).   
As far as the forecast design is concerned, the first estimation sample extends from January, 
1971 to December, 1995, i.e., 50% of in- and out-of-sample splits, and it is recursively 
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expanded until the end of the sample is reached (March 2022). Forecasts are generated for 
horizons ℎ = 0, 1,2,3, 4,5,6. 
To compare the out-of-sample forecasting ability, this study focuses on the quadratic 
probability score (QPS). Guérin and Leiva-León (2017) define the out-of-sample QPS 
( ) as follows:  

= 2
− + 1 = 0/ − ,                                                   (11) 

where − + 1 is the size of the evaluation sample,   is the recession dummy which 
takes on a value of 1 if the US economy is in recession in period + ℎ and 0 otherwise.  The 
predicted probabilities of being in regime j from model k are calculated as follows: 

= | = ∑  = | ,                                                                            (12)   
Where  is the transition probability. Since we want to examine whether state data indicators 
outperform national indicator in forecasting U.S. business cycle turning points, we use the 
following MS as a benchmark model: 

= + + ,                                                                                                                    (13) 

where  is the US national temperature indicator. Moreover, we evaluate the statistical 
significance of our results using Diebold-Mariano-West test (Diebold and Mariano; 1995; 
West; 1996). 
The forecasting results are presented in Tables 1 and 2. Table 1 reports the results for 
temperature returns. It is evident that BMA and Equal Weighting models fail to beat the 
benchmark. On the other hand, DMA models perform much better relative to the benchmark. 
Specifically, DMA combined- and QPS-based weighting schemes outperform in a statistically 
significant way the MS benchmark. Table 2 reports the results for temperature volatility. 
Results suggest that all models outperform the MS benchmark in forecasting US business cycle 
turning points. The results show that DMA combined- and all QPS-based weighting schemes 
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outperform the MS benchmark at the 1% critical level while the rest of the models beat the 
benchmark at the 5% level.  

[INSERT TABLES 1 AND 2] 
In sum, our results highlight the importance of state-level data associated with climate risks, as 
proxied by temperature changes and its realized volatility, in forecasting US business cycle 
turning points. 
4. Conclusion 
The role of state-level economic factors in driving national business cycles of the US and the 
associated growing importance of climate change-related risks at both aggregate- and local-
level due to global warming are now well-established facts. Moreover, given the strong 
relationship between regional economic activity and climate risks, this paper compares the 
ability of state-level temperature changes and its (realized) volatility with the corresponding 
national values of the same in forecasting recessions of the overall US. In this regard, to 
combine the information contained in state-level climate risks in Markov-switching models, 
we utilize Bayesian Model Averaging (BMA) and Dynamic Model Averaging (DMA) 
approaches. We find that forecasts obtained from the DMA combination scheme provide 
accurate forecasts of the US business cycles based on state-level measures of climate risks, 
particularly the volatility of temperature, relative to the corresponding small-scale Markov-
switching benchmark models that use national-level values of the climate change-related 
predictors. 

Our results highlight that policymakers should utilize the information contained in state-level 
measures of climate risks, instead of corresponding national-level values, to forecast overall 
US recessions accurately, and design appropriate policy responses. However, to best utilize the 
combined role of local climate risks, which leads to a wide-array of state-level metrics of 
economic activities, policy authorities should rely on a dynamic rather than a static forecast 
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combination approach. The strong performance of the DMA over the BMA in the large-scale 
Markov-switching models is, understandably, a depiction that the relative importance of state-
level temperature changes and its volatility has been evolving over time.   

As part of future research, it would be interesting to perform such an analysis for other 
developed and emerging economies, contingent on the availability of regional-level data on 
climate risks. 
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Table 1: Out-of-sample Quadratic Probability Score (QPS) for forecasting US business cycle 
turning points from data on national and state-level temperature changes 
   Horizon 
  0 1 2 3 4 5 6 
        
Panel A: Dynamic model averaging (DMA) with α=0.95 
Likelihood-based 0.400 0.409 0.427 0.442 0.457 0.457 0.468 
        
QPS-based 0.238** 0.217** 0.209** 0.205** 0.204** 0.205** 0.207** 
Combined-based 0.231** 0.219** 0.213** 0.208** 0.206** 0.206** 0.205** 

 
Panel B: Dynamic model averaging (DMA) with α=0.99 
Likelihood-based 0.475 0.494 0.528 0.554 0.579 0.598 0.613 
QPS-based 0.233** 0.208** 0.199** 0.192** 0.189** 0.190** 0.192** 
Combined-based 0.251* 0.229** 0.216** 0.205** 0.200** 0.196** 0.194** 
 
Panel C: Baysian model averaging (BMA) 
Likelihood-based 0.587 0.590 0.599 0.594 0.588 0.576 0.543 
QPS-based 0.598 0.503 0.475 0.474 0.482 0.491 0.499 
Combined-based 0.477 0.492 0.559 0.574 0.582 0.583 0.533 
Panel D: 
Equal Weighting 0.362 0.342 0.338 0.339 0.342 0.345 0.348 
MS 0.329 0.319 0.316 0.316 0.318 0.318 0.318 
Notes: The first estimation sample extends from January 1971 to December 1995, and it is recursively expanded 
until the end of the sample is reached (March 2022). Statistically significant reductions in QPS according to the 
Diebold-Mariano-West test are marked using ** (5% significance level), and * (10% significance level). The 
benchmark model is Markov-Switching model (MS), which includes a national-level measure of climate risks. 
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Table 2: Out-of-sample Quadratic Probability Score (QPS) for forecasting US business cycle 
turning points from data on national and state-level (realized) volatility of temperature changes 
   Horizon 
  0 1 2 3 4 5 6 
        
Panel A: Dynamic model averaging (DMA) with α=0.95 
Likelihood-based 0.354** 0.348** 0.345** 0.344** 0.344** 0.347** 0.351** 
        
QPS-based 0.150*** 0.149*** 0.153*** 0.158*** 0.163*** 0.165*** 0.168*** 
Combined-based 0.149*** 0.147*** 0.151*** 0.156*** 0.162*** 0.164*** 0.167*** 

 
Panel B: Dynamic model averaging (DMA) with α=0.99 
Likelihood-based 0.360** 0.355** 0.352** 0.351** 0.353** 0.354** 0.359** 
QPS-based 0.159*** 0.153*** 0.154*** 0.158*** 0.162*** 0.164*** 0.167*** 
Combined-based 0.161*** 0.154*** 0.154*** 0.157*** 0.162*** 0.164*** 0.167*** 
 
Panel C: Baysian model averaging (BMA) 
Likelihood-based 0.387** 0.390** 0.399** 0.394** 0.388** 0.376** 0.343** 
QPS-based 0.209*** 0.206*** 0.207*** 0.209*** 0.212*** 0.213*** 0.215*** 
Combined-based 0.377** 0.392** 0.359** 0.374** 0.382** 0.383** 0.343** 
Panel D: 
Equal Weighting 0.379** 0.372** 0.369** 0.366** 0.364** 0.362** 0.360** 
MS 0.597 0.599 0.609 0.609 0.612 0.624 0.625 

Notes: The first estimation sample extends from January 1971 to December 1995, and it is recursively expanded 
until the end of the sample is reached (March 2022). Statistically significant reductions in QPS according to the 
Diebold-Mariano-West test are marked using *** (1% significance level), and ** (5% significance level). The 
benchmark model is Markov-Switching model (MS), which includes a national-level measure of climate risks. 
 


