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1 Introduction

Wachter (2013) and, more recently, Tsai and Wachter (2015), develop theoretical models in which

aggregate consumption follows a normal distribution with low volatility most of the time but with

some probability of a far out-in-the-left-tail realization of consumption, creating risk associated

with rare disaster events. The possibility of such a poor outcome substantially raises the equity

premium, and the time-variation in the probability of such a disaster fosters high stock-market

volatility. Extending the benchmark theoretical models of rare disaster risks (Rietz, 1988; Barro

2006) by making the probability of a disaster stochastically varying over time (and agents having

recursive preferences rather than power utility functions) Wachter (2013) and Tsai and Wachter

(2015) are able, for reasonable values of the structural parameters of their models, to generate

stock-market volatility close to that observed in U.S. data. In other words, a theoretical link exists

between rare disaster risk and stock-market volatility, in addition to the well-known link between

rare disaster risk and the equity premium.

In light of these recent theoretical advances, our empirical research aims to forecast U.S. stock-

market volatility in the presence of rare disaster risks, but at the level of individual states rather

than at the aggregate U.S. level. The underlying reason for taking such a regional perspective is de-

rived from the premise that core business activities of firms often occur close to their headquarters

(Pirinsky and Wang, 2006; Chaney et al., 2012) and, hence, equity prices should contain a non-

negligible regional component, so much so that investors overweight local firms in their portfolios

(Coval and Moskowitz, 1999, 2001; Korniotis and Kumar, 2013). Obviously, then, the forecasting

exercise that we undertake in this research should be of immense value to investors, given that

accurate forecasts of stock-market volatility carries widespread implications for portfolio selection,

derivative pricing, risk management, and also for policy-making (Poon and Granger 2003; Rapach

et al., 2008). In the process, we add to the vast associated literature on U.S. stock-market volatil-

ity, wherein earlier researchers have used a wide array of (univariate and multivariate, linear and

nonlinear) forecasting models and (behavioral, macroeconomic, and financial) predictors (see, for

example, Ben Nasr et al., 2016; Liu et al., 2020; Gupta et al., 2021; Liu and Gupta, 2022; Salisu et

al., 2022a, b; Segnon et al., forthcoming), by bringing to the forefront a regional perspective and by

considering the role of rare disaster risk.

At this juncture, it is important to highlight the following integral features of our analyses:

First, traditionally, disaster events are generally captured by cumulative declines in output and/or

consumption of at least 10% over one or more years (see Ćorić (2021), and Ćorić and Šimić (2021)

for detailed discussions in this regard, with these authors extending the original data sets of Barro

and Ursúa (2008, 2012)). Given this, a major obstacle to full-fledged empirical verification of rare

disaster models is that individual countries rarely face such major disasters, resulting in a small
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sample problem inherent in the use of actual rare disasters, which, in turn, explains why earlier re-

searchers studying the implications of rare disasters for asset pricing have relied theoretical models

calibrated on rare-disaster-risk probabilities derived from historical cross-country evidence of ma-

jor declines in output and/or consumption.1 In contrast, we consider, in order to capture the role

of rare disaster risks in predicting daily state-level volatility, daily proxies related to corresponding

state-level climate risks, besides those of the aggregate U.S., as motivated by the growing litera-

ture on “Climate Finance” (Engle et al., 2020; Giglio et al., 2021; Stroebel and Wurgler, 2021; van

Benthem et al., 2022).

The risks associated with climate change can be typically categorized into physical risks and

transition risks. The former arises due to rising temperatures, higher sea levels, heavy storms and

floods, and wildfires. The latter arise due to a gradual switch-over to a low-carbon economy and

comprise risks due to changes in climate policy, the development of disruptive green technologies,

and changing consumer preferences. Hence, every future scenario includes climate-related finan-

cial risks (though their level, as well as the source of uncertainty, may vary) due to the occurrence

of rare disasters (Battiston et al., 2021; Flori et al., 2021). Unsurprisingly, researchers now rou-

tinely use climate risks, as captured by textual and narrative analyses of climate-change-related

news (involving natural disasters, global warming, international summits, and climate policy) or via

movements of temperature and precipitation, as high-frequency proxies of potential forthcoming

rare disaster risks (Choi et al., 2020; Kapfhammer et al., 2020; Faccini et al., 2021; Bonato et al.

2022, forthcoming; Bua et al., 2022). In line with this research, we use the information content

of seasonal, predictable, and abnormal patterns of temperature, precipitation, heating degree days,

cooling degree days, and wind speed to capture climate-related risks. In addition, we rely on the

daily Google Search Volume Index (SVI) on the topic “global warming” in a particular state and the

news trends (NT) function of the Bloomberg terminal to compile the news counts involving the term

“climate change” for every state. The intensity of such keywords-based searches can reflect the

perceived transition-risks component of climate change, in addition to physical risks.

We forecast state-level daily stock-market realized volatility using an extended version of the

heterogeneous autoregressive realized volatility (HAR-RV) model of Corsi (2009). Our extension in-

corporates the role of climate risks of the corresponding state and the overall U.S. over the period

from September, 2011 to October, 2021. Realized volatility, as captured by the square root of the

sum of squared intraday log-returns (of equities domiciled in a given state) over a day (following

Andersen and Bollerslev (1998)), is considered as an accurate, observable, and unconditional met-
1In this regard, Berkman et al. (2011, 2017), propose a solution to the small sample problem that would make the

empirical estimation of such models feasible. They focus on a large sample of potential disasters, i.e., international political
crises, that are likely to cause significant changes in perceived rare disaster probabilities. Using a detailed database of
international political crises, they document that various international crises, over the period from 1918 to 2006, affect
equity returns and volatility of a large number of developed and emerging economies.
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ric of volatility (McAleer and Medeiros, 2008), unlike the measures of the same derived from the

popular generalized autoregressive conditional heteroscedastic (GARCH) and stochastic volatility

(SV) models. At the same time, the benchmark HAR-RV model, though being simple in formulation,

is elaborate enough to capture long-memory and multi-scaling properties often observed for stock-

market volatility (Mei et al., 2017), as it uses volatilities from different time resolutions to model and

to predict realized volatility. Therefore, the HAR-RV model can easily mimic the idea of the so-called

heterogeneous-market hypothesis (Müller et al. 1997), which states that different types of market

participants that populate the stock market are characterized by differences in their sensitivity to

flows of information that is available at different time horizons.

Since we have as many as 14 state-level and nation-wide climate-related predictors, as well as

intraday-data-based realized moments such as realized jumps, realized upside and downside tail

risks, realized skewness, and realized kurtosis, for the 50 U.S. states, estimation of such a large

number of prediction models is not feasible. Due to this, we use a model-based bagging (MOBA)

algorithm to analyze whether climate risks help to improve predictive performance beyond that of

benchmark HAR-RV models (without and with the moments-based controls). We must point out

that the decision to look at both state-specific and aggregate climate risks involving temperature

and precipitation emanates from the recent study by Gil-Alana et al. (forthcoming), which points

towards a starkly contrasting degree of persistence of these climate shocks for the U.S. as a whole,

and across the states. In essence, we need to account for the heterogeneity involving the underlying

data-generating processes of aggregate and localized rare disaster risks that will originate from

climate change. This is more so, given that recent regional analyses have revealed that climate

risks impact state-level business cycles and uncertainties (Sheng et al., 2022a, b), which, in turn,

are likely to feed indirectly into state-level stock-market realized volatility, given the importance of

these two predictors identified by the studies cited above.

To the best of our knowledge, this is the first paper to predict state-level realized volatility

based on rare disaster events emanating from climate risk. Besides being of relevance to investors,

predicting daily realized state-level stock-market volatility traces out the future path of state-level

financial uncertainty, which can then be incorporated into mixed data sampling (MIDAS) models

to predict low-frequency (monthly or quarterly) real-activity variables and allow policymakers to

come up with appropriate localized policy responses to tackle a potential recessionary impact of

uncertainty in a time-efficient-manner. We organize the remainder of this research as follows. In

Section 2, we describe our data. In Section 3, we describe the methods we use in our empirical

research. In Section 4, we report our empirical results. In Section 5, we conclude.
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2 Data

In order to study the predictive value of climate risks for state-level stock-market volatility, we

study 5-min intraday data on the Bloomberg State level stock-market indices covering 50 US States.

Bloomberg terminal composes these state-level stock-market indices as the capitalization-weighted

index of equities domiciled in a state.2

We compute the sum of squared intraday returns of the indices and, thus, consider the classical

estimator of realized variance (Andersen and Bollerslev, 1998). We obtain the state-level realized

variance as follows (we do not introduce a subindex to denote a state for notational convenience).

RVt =

M∑
i=1

r2t,i, (1)

where rt,i denotes the intraday M × 1 return vector, and i = 1, ...,M denotes the number of intraday

returns. Equipped with Equation (1), we compute the realized volatility as the standard deviation

of the realized variance: R̃V t =
√
RVt. Given that the realized variance typically exhibit occasional

large peaks, we study, in our empirical analysis, the realized volatility defined as the square root of

the realized variance given in Equation (1).3

− Figures 1 to 3 about here. −

We plot the mean of the realized volatility for every state in Figure 1. The mean of realized volatility

varies substantially across states, with returns of companies domiciled in New Mexico, Vermont,

and Wyoming displaying a particularly large average realized volatility. Hence, realized volatility

exhibits a substantial heterogeneity in the cross-sectional dimension. This cross-sectional hetero-

geneity can also be seen in Figure 2, which we use to plot the time series of the cross-sectional

mean of realized volatility (black line) along with the time series of the cross-sectional mean plus

one standard deviation (gray line). The cross-sectional mean exhibits the usual temporal peaks

that give rise to the volatility clustering characteristic of financial market data. When we add one

standard deviation to the cross-sectional mean, we observe again the type of substantial cross-

sectional heterogeneity that we already observed in Figure 3. However, a look at the time-series

dimension of the data further reveals that this cross-sectional heterogeneity is scattered through-

out the entire sample period and not concentrated in a few short sub-sample periods. Finally, we
2Upon further detailed inspection of the raw data, we spotted periods (a small fraction of the data for most states) during

which the data exhibit more or less a straight trend, which probably indicates that Bloomberg stopped producing the indices
during those periods and then interpolated the resulting gap in the data. We keep those periods in the sample for computing
the descriptive statistics we shall present in this section, but we remove those periods when we compute the estimation and
simulation results we shall present in Section 4. We refer the interested reader to the the Supplementary Material, where we
present further details regarding the “gap periods’. In the Supplementary Material, we also report some further descriptive
statistics of the data.

3In order to avoid notational clutter, we do not introduce a separate abbreviation for the realized volatility, but emphasize
that it is the realized volatility that we use to estimate our prediction models and to evaluate predictions (see Sections 3.1
−3.3).
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plot in Figure 3 the auto-correlation function of realized volatility, where we average the coefficients

of auto-correlation across states. The auto-correlation function exhibits the usual slowly decaying

pattern and, thereby, illustrates that the HAR-RV model is a good starting point for our empirical

analysis.

We collect daily weather data from the Bloomberg terminal, as compiled by the National Cli-

matic Data Center (NCDC), for the US and our sample of 50 states. The weather data captures

meteorological phenomena along several dimensions, including temperature, precipitation, number

of heating degree days (HDD), number of cooling degree days (CDD), and wind speed as described

below:

• Temperature: The average temperature (usually of the high and low) that was observed be-

tween 7am and 7pm local time, expressed in Fahrenheit.

• HDD: The number of degrees below 65 degrees Fahrenheit of the mean temperature used to

estimate the energy needed to heat a building.

• CDD: The number of degrees above 65 degrees Fahrenheit of the mean temperature used to

estimate the energy needed to cool a building.

• Precipitation: The amount of rain, snow, sleet or hail that falls in a specific location.

• Wind speed: Average of sustained winds which does not include wind gust, expressed in

knots.

Like Choi et al., (2020), we decompose the weather-related variables into three components that

account for seasonal, predictable, and abnormal patterns. In particular, for each country, i, and

day, t, we compute the daily WeatherMeasureit using the following formula:

WeatherMeasureit = Aver WeatherMeasureit +Mon WeatherMeasureit +Ab WeatherMeasureit, (2)

where WeatherMeasureit = {temperature, HDD, CDD, precipitation, wind speed}, and the term

Aver WeatherMeasureit denotes the mean of WeatherMeasureit in state i over the 120 months prior

to t. Moreover, the variable Mon WeatherMeasureit denotes the difference of the mean of the devia-

tion of the WeatherMeasureit from the monthly average temperature in state i in the same calendar

month over the last ten years and Aver WeatherMeasureit. Finally, the variable Ab WeatherMeasureit

is the remainder (that is, the abnormal deviation of weather conditions) and, hence, captures un-

usual deviations from local weather conditions. For this reason, we focus on this variable in our

analysis. We standardize the abnormal deviations, commonly known as the standardized anomaly

(Kim et al., 2021).
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It is also important to measure how people react to abnormal local weather conditions. To this

end, we use the daily Google Search Volume Index (SVI) of the topic “global warming” in a state (and

a nation-wide measure for the US). This index captures retail investor attention to climate risks.

Moreover, the attention to abnormal weather conditions also can be fostered via communication

channels and the media. Hence, we use the news trends (NT) function of the Bloomberg terminal

to compile data on the news counts, including the term “climate change” for every state (and a

nation-wide measure for the US) The NT function, being based on a vast archive of news stories

and social media posts from over 150,000 sources, renders it possible to search specific keywords

and obtain the historical volume of relevant news. We use this NT-based measure to capture

institutional investors’ attention. Institutional investors (that is, market participants who work

in asset management, banking, and institutional financial services) are known to use Bloomberg

terminals as a major source of information (Ben-Rephael et al., 2017). Hence, we assume that

institutional investors, who have more resources and incentives to pay attention to news quickly,

will follow the news that appears on Bloomberg terminal.

3 Methods

3.1 Defining the Core Model

We use the core HAR-RV model of Corsi (200) as our benchmark model. The following equation

represents this model:

RVt+h = β0 + β1RVt + β2RVw,t + β3RVm,t + ut+h, (3)

where estimation is done by the ordinary-least-squares techniques (OLS), βj , j = 0, .., 3 are the coef-

ficients to be estimated, ut+h denotes the usual disturbance term, and RVt+h is the average realized

volatility over the prediction horizon, h. We set h = 1, 5, 22, 44 to cover short and long prediction

horizons. The model features three predictors: the daily realized volatility, RVt, the weekly realized

volatility, RVt,w, and the monthly, RVt,m realized volatility. We compute the weekly realized volatility

as the average realized volatility from period t− 5 to period t− 1, and the monthly realized volatility

as the average realized volatility from period t− 22 to period t− 1.

3.2 Constructing the Extended Model

We are mainly interested in the question of whether extending the core HAR-RV model by the

climate-related predictors improves the preditive performance of the model. In total, we have 14

(state-level and nation-wide) climate-related predictors and, therefore, a total of 214 combinations

of these predictors that we can use to extend the core HAR-RV model. Given that our plan is to
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estimate the predictions models for the 50 states in our sample, and given that we study a large

dataset that consists of daily data, estimation of such a large number of prediction models is not

feasible. We instead use the following model-based bagging (MOBA) algorithm to analyze whether

the climate-related predictors help to improve predictive performance beyond that of the core HAR-

RV model.

�

MOBA Algorithm

1. Fix the number of simulation runs, Smax. Set s = 1. At the start of every simulation run,

use sampling without replacement to split the data into an estimation, a validation, and a test

sample.

(a) Fix a maximum number, nmax, of iterations and some small number, v. Set n = 1.

i. For n = 1: Estimate the core HAR-RV model on the training data by OLS. Use the model

along with the validation data to compute a vector of initial validation predictions,

RVt+h,1.

ii. Initialize the vector of average validation predictions for the extended model: R̄V t+h,n=1 =

RVt+h,1.

iii. For 2 ≤ n ≤ nmax: Sample a new prediction model.

A. Sample the number, N ∈ {1, 2, ..., 14}, of climate-related predictors to be used for

an extended prediction model.

B. Use N to sample without replacement from the climate-related predictors.

C. Use the sample climate-related predictors to form an extended prediction model of

the format

RVt+h = β0 + β1RVt + β2RVw,t + β3RVm,t + θXt + ut+h, (4)

where Xt is the N ×1 vector of sampled predictors and θ is the 1×N corresponding

coefficient vector to be estimated.

D. Estimate the extended model on the training data by OLS. Use the estimated ex-

tended model and the validation data to compute a new validation-prediction vec-

tor, RVt+h,2.

iv. Update the vector of average validation predictions, R̄V t+h,n = [R̄V t+h,n−1(n − 1) +

RVt+h,2]/n.

v. Update: RVt+h,2 = R̄V t+h,n.

(b) Track the maximum absolute percentage change, %R̄V t+h,n, in the vector of average vali-

dation predictions.
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i. If %R̄V t+h+1 ≤ v:

A. Apply the extended models estimated in Step (a), iii. to the test data, and average

the predictions from the models to compute a vector of out-of-bag predictions.

B. Return to Step 1 and start a new simulation run.

ii. If %R̄V t+h+1 > v: increase n by one increment, n+ 1.

A. If n+ 1 ≤ nmax: Return to Step (a), iii. and sample a new extended model.

B. If n+ 1 > nmax: Proceed as in Step (b), i., A. and. Then return to Step 1 and start a

new simulation run.

2. Update s = + + 1.

�

Our MOBA algorithm has only two hyper-parameters: nmax and v, plus the maximum number

of simulation runs. In our empirical analysis, we set nmax = 100, v = 0.01, and Smax = 500, but

the algorithm typically terminates much earlier before nmax is reached and that is cheap in terms

of computational time. For example, when the algorithm terminates after about 30 iterations, a

standard boosting algorithm with 14 weak learners would have to terminate after only about two

iterations to reach a similar average computational speed. The computational speed of the MOBA

algorithm also is high as compared to random forests, an algorithmic statistical-learning technique

tailored to analyze datasets with many predictors. Forecasts computed by means of random forests

typically require the estimation of many regression trees to build a random forest (for a textbook

exposition of various statistical learning algorithms, see Hastie et al. 2009). Our MOBA algorithm

further implies that the forecasts implied by the core HAR-RV model are, by construction, nested

versions of the forecasts computed using the algorithmically constructed extended model, making it

easy to compare the forecasts implied by the core and extended models through standard statistical

tests and, thereby, to trace out whether climate risks contribute to improving the accuracy of

forecasts of state-level realized stock-market volatility.

3.3 Evaluating Forecasts

As baseline statistics to evaluate the out-of-sample predictions, we use the out-of-bag R2
oob,s statistic

defined for simulation run, s, as

R2
oob,s = 1− PEm,s/PEc,s, (5)

where PEj,s, j = m, c denotes the sum of the squared out-of-bag prediction error for simulation run,

s, for the MOBA, m, and the HAR-RV core, c, models. We then form, for every state, the average,

R2
oob of the resulting vector of R2

oob,s statistics across all simulation runs. A positive R2
oob statistic

indicates that the extended model produces on average a lower out-of-bag prediction error than
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the core HAR-RV model. In a final step, we use the sampling distribution of the R2
oob,s statistics to

compute a p-value, pval = 1−
∑
s 1(R2

oob,s > 0)/S, where 1(·), denotes the indicator function.

The out-of-bag R2
oob statistic represents the case of a quadratic symmetric loss function, that

is, the basic assumption underlying the statistic is that the loss a forecaster suffers is increasing

in the quadratic prediction error, irrespective of whether a model under- or over-predicts realized

volatility. In practical settings, however, behavioral biases or trading strategies involving derivative

securities (e.g., trading strategies involving options) may imply that a forecaster has a loss function

that is asymmetric in the prediction error. We account for this possibility by studying the following

loss function (Elliott et al. 2005):

L(p, a) = [a+ (1− 2a)I[PEt+h<0]]|PEt+h|p. (6)

For p = 1, we obtain a lin-lin loss function (the absolute prediction error matters), and for p = 2 we

obtain a quad-quad loss function (the quadratic prediction error matters). The shape parameter,

a ∈ (0, 1), determines the asymmetry of the loss function, where a = 0.5 gives a symmetric loss

function. Hence, for a = 0.5 and p = 1, the loss is a function of the absolute prediction error, sand

for a = 0.5 and p = 2 we get a loss function that is symmetric in the squared prediction error. For

a > 0.5, a forecaster suffers a larger loss from an under-prediction of realized volatility (as compared

to an over-prediction of the same absolute size), and for a < 0.5 an over-prediction gives rise to a

larger loss than a comparable under-prediction.

Upon using Equations (5) and (6), we can then compute the out-of-bag R2
oob statistic for alterna-

tive shapes of the loss function for both the core HAR-RV model and the MOBA models and examine

whether specific types of forecasters (as represented by the different shapes of the loss function)

benefit from considering climate risks for predicting state-level realized stock-market volatility.

3.4 Computing Control Variables

While our primary focus is whether the climate risks improve predictions of RV from the core HAR-

RV model, we also consider an extended HAR-RV model as an alternative benchmark model. The

extended HAR-RV model features as control variables several other intraday-data-based realized

moments that have been extensively studied in earlier research. Specifically, we consider the fol-

lowing control variables: realized jumps, JUMPS, realized upside and downside tail risks, TRu and

TRd, and realized skewness, RSK, as well as realized kurtosis, RKU .

We study RSK to trace the asymmetry of the returns distribution, while we use RKU to capture
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its extremes (see, e.g., Amaya et al., 2015). We calculate RSK and RKU as follows:

RSKt =

√
M
∑M
i=1 r

3
(i,t)

RV
3/2
t

, (7)

RKUt =
M
∑M
i=1 r

4
(i,t)

RV 2
t

. (8)

The scaling terms, (M)1/2 and M , turn RSK and RKU into their daily values.

We use the formula derived by Barndorff-Nielsen and Shephard (2004) to trace out the realized

jumps, and use the fact that the realized variance converges into a discontinuous (jump) and a

permanent component. We have

lim
M→∞

RV 2
t =

∫ t

t−1
σ2(s)ds+

Nt∑
j=1

k2t,j , (9)

where Nt denotes the number of jumps within day t and kt,j denotes the jump size. It follows from

Equation (9) that RVt is a consistent estimator of the jump contribution plus the integrated variance∫ t
t−1 σ

2(s)ds. Building on asymptotics, Barndorff-Nielsen and Shephard (2004, 2006) show that

lim
M→∞

BV 2
t =

∫ t

t−1
σ2(s)ds, (10)

where BVt denotes the daily realized bipolar variation, which is defined as

BVt = µ−21

(
M

M − 1

) M∑
i=2

|rt,i−1||ri,t| =
π

2

M∑
i=2

|rt,i−1||ri,t|, (11)

where we define

µa = E(|Z|a), Z ∼ N(0, 1), a > 0. (12)

Upon using the continuous component of realized variance, we define the consistent estimator of

the pure daily jump contribution:

Jt = RVt −BVt. (13)

The formal test estimator proposed by Brandorff-Nielsen and Shephard (2006) can be used to in-

spect the significance of the jumps. Specifically, we make use of the following test statistic:

JTt =
RVt −BVt

(vbb − vqq) 1
NQPt

, (14)
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where vbb =
(
π
2

)
+ π − 3 and vqq = 2, and QPt is defined as the daily Tri-Power Quarticity:

TPt = M
M

M − 2

(
Γ(0.5)

22/3Γ(7/6)

) M∑
i=3

|rt,i|4/3|rt,i−1|4/3|rt,i−2|4/3, (15)

which converges to

TPt →
∫ t

t−1
σ4(s)ds, (16)

even in the presence of jumps. For each t, JTt ∼ N(0, 1) as M →∞.

Equation (13) makes clear that the jump contribution to RVt is non-negative. Hence, in order

to rule out negative empirical contributions, we redefine the jump measure as (see Zhou and Zhu,

2012):

RJt = max(RVt −BVt; 0). (17)

Last, we compute two measures of tail risk using the Hill estimator (Hill, 1975). We construct Xt,i,

the set of reordered intraday returns rt,i, in such a way that

Xt,i ≥ Xt,j for i < j. (18)

We compute the Hill positive tail risk estimator (our predictor TRu) as

Hup
t =

1

k

k∑
j=1

ln(Xt,i)− ln(Xt,k) (19)

and the negative tail risk estimator (our predictor TRd) as

Hdown
t =

1

k

n∑
j=n−k

ln(Xt,i)− ln(Xt,n−k) (20)

where k is the observation denoting the chosen α tail interval.

4 Empirical Results

We present in Panel A of Figure 4 violin plots to summarize our baseline findings for the 50 states.4

The violin plots depict the cross-sectional distribution of the average Roob statistic, where a positive

statistic shows that the MOBA model outperforms the core HAR-RV model on average, indicating

that the climate risks help to improve predictive accuracy. The white dot represents the median,

4We compute all our empirical results using the R language and environment for statistical computing (R Core Team
2021). All results that we report in this section are based on (random) partitions of the as follows: We use a train fraction
of 50%, a validation fraction of 20%, and a test fraction of 30%. We report results for an alternative partition scheme at the
end of the paper (Supplementary Material).
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the thick black bar represents the interquartile range, and the thin black bar denotes ±1.5 times

the interquartile range. The shaded gray area represents the area under kernel density estimates of

the cross-section of statistics and, thus, informs in detail about the distribution across states. The

main message conveyed by the violin plots is that the cross-sectional distribution of the statistic

shifts upward when we increase the length of the prediction horizon. The center of the distributions

can be found above unity for the two long prediction horizons, while it settles close to but below

unity for the two short prediction horizons.

− Figure 4 about here. −

We summarize the p-values for the Roob statistic in Panel B of Figure 4. In line with the results

we report in Panel A, we observe that the center of the cross-sectional distribution of the p-values

clearly shifts downward when we increase the prediction horizon. For the long prediction horizons,

the mass of the kernel densities settles below the two dashed horizontal lines, representing the 10%

and 5% significance levels.

− Figure 5 about here. −

Figure 5, we go beyond our baseline scenario and compare an extended MOBA model with an

extended HAR-RV model. In addition to the core HAR-RV predictors, both models feature the

realized skewness, realized kurtosis, and realized jumps, and our measures of realized upside and

downside tail risk as control variables. As in our baseline scenario, we find that the importance

of climate risks for predictive accuracy strengthens in the cross-section of states when we increase

the length of the predictive horizon.

− Figure 6 about here. −

We summarize the results (p-values) for good and bad realized volatility in Figure 6. This decompo-

sition of realized volatility is motivated by the observation made by Giot et al. (2010) that market

participants, in addition to the level of volatility, also care about the nature of volatility, with mar-

ket participants typically differentiating between upside and downside volatilities. The results for

good and bad realized state-level stock-market volatility are similar across good and bad realized

volatility and lend further support to our main finding that the predictive value of the climate risks

for state-level realized stock-market volatility strengthens in the cross-section of states when we

increase the prediction horizon.

− Figure 7 about here. −

We plot the results for an asymmetric loss function in Figure 7, where we report results for a

loss function of the quad-quad type in Panel A, and the results for a loss function of the lin-lin

12



type in Panel B. We present the results for different values of the shape parameter, a. The results

show that the center of the cross-sectional distribution of the R2
oob statistic shifts upward as we

increase the prediction horizon for a forecaster who suffers a higher loss from an under-prediction

of realized volatility than from an over-prediction of the same absolute size. In contrast, the center

of the cross-sectional distribution shifts downward as the length of the forecast horizon increases

for a forecaster who incurs a higher loss from an over-prediction than from a comparable under-

prediction. Hence, the magnitude of the benefits of using climate risks for predicting state-level

realized stock-market volatility clearly depends on the shape of a forecaster’s loss function, where

the results for the quad-quad loss function are stronger than those for the lin-lin loss function.

In Figure 8, we present results for a scenario in which the MOBA model features either only

nation-wide or only state-level climate risks as additional predictors relative to the core HAR-RV

model. In this scenario, the MOBA model features only seven additional climate predictors. Hence,

it would be straightforward to estimate all of the possible 27 = 128 forecasting models every period

for all states and then rely on some model-selection or model-averaging criterion to form a forecast

(for such a combinatorial approach, see, for example, Pesaran and Timmermann, 2000). To ensure

that the results for this scenario are directly comparable to the results in Figure 4, however, we

continue to use our MOBA algorithm for this simplified scenario.

− Figure 8 about here. −

The test results show that, in the cross section of states, both nation-wide and state-level climate

risks contain predictive value for state-level realized stock-market volatility at the two long predic-

tion horizons, where, in the cross section, the test results for the nation-wide climate risks are

even somewhat stronger in terms of statistical significance than those for the state-level climate

risks. The state-level climate risks, in turn, appear to work slightly better than the nation-wide

climate risks for several states in case of the intermediate prediction horizon. In any case, the test

results show that a forecaster should consider both nation-wide and state-level climate risks to

predict state-level realized stock-market volatility at the two long forecast horizons. Given the long

list of candidate preiction models with so many predictor variables, the MOBA algorithm is an effi-

cient technique to extract predictive information from the nation-wide and state-level climate-risk

predictors.

5 Concluding Remarks

Based on high-frequency US data for the period beginning in September, 2011 and ending in Octo-

ber, 2021, we have analyzed the predictive value of climate risks for state-level realized stock-market

volatility at short and long prediction horizons. To this end, we have computed out-of-bag predic-
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tions using a simple and efficient MOBA algorithm to extract the predictive information from the

various nation-wide, and state-level climate risks predictors. Our main finding is that, in the cross

section of states, climate risks have predictive value for state-level realized stock-market volatility

at the two (one month and two months) forecast horizons that we have studied in our empirical

research. This finding also obtains for good, and bad state-level realized stock-market volatility

and when we use various realized moments of state-level stock-market returns as control variables.

Moreover, we have shown that, in the cross section of states, a forecaster who suffers a larger loss

from an under-prediction of state-level realized stock-market volatility tends to benefit to a larger

extent from tracing climate risks than a forecaster who incurs a larger loss from an over-prediction

of the same absolute magnitude. Our results, concerning the importance of local climate-related

rare disasters for accurate prediction of state-level stock-market volatility, convey valuable infor-

mation for investors, portfolio managers, and derivate traders, especially when one accounts for the

fact that stock market players tend to overweigh local firms in their portfolios (Pham et al., 2021).

In terms of future research, it is interesting to combine our results with mixed-frequency models

of the US economy to improve the accuracy of low-frequency predictions of state-level real-activity

variables, which is of obvious importance for policymakers. In technical terms, it is interesting to

compare the prediction performance of the MOBA algorithm that we have used in this research with

the performance of other widely-studied techniques like, for example, the Lasso or random forests

that have been used in earlier research in setting with many predictors.
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Figure 1: State-level mean of realized volatility
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Figure 2: Cross-sectional mean and standard deviation of realized volatility
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The black line denotes the cross-sectional mean of realized volatility, where we merged the data along the date column. The gray line is
denotes the cross-sectional mean plus one cross-sectional standard deviation of realized volatility.
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Figure 3: Cross-sectional mean of autocorrelation of realized volatility
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The dots denote the cross-sectional mean of coefficient of autocorrelation of realized volatility, where we merged the data along the date
column. The shaded gray area denotes the cross-sectional mean coefficient of autocorrelation plus/minus one standard deviation of the
coefficient of autocorrelation autocorrelation of realized volatility.
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Figure 4: Baseline results
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Panel B: p-values
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A positive R2oob statistic indicates that the MOBA model outperforms the core HAR-RV model on predicting the test data (on average across
all simulation runs). The white dot represents the median, the thick black bar denotes the interquartile range, and the thin black bar denotes
±1.5 times the interquartile range. The boundaries of the shaded area represent kernel density estimates estimated on the R2oob statistics
for the states. The dashed horizontal lines (Panel B) denote the 10% and 5% significance levels.
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Figure 5: The HAR-RV model includes realized moments

Panel A: Core HAR-RV model is the benchmark model
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Panel B: HAR-RV model featuring realized moments is the benchmark model
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A positive R2oob statistic indicates that the MOBA model outperforms the core HAR-RV moments-model on predicting the test data (on average
across all simulation runs). The realized moments are: realized skewness, realized kurtosis, realized jumps, realized upside tail risk, realized
downside tail risk. The white dot represents the median, the thick black bar denotes the interquartile range, and the thin black bar denotes
±1.5 times the interquartile range. The boundaries of the shaded area represent kernel density estimates estimated on the R2oob statistics
for the states. The dashed horizontal lines (Panel B) denote the 10% and 5% significance levels.
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Figure 6: Results for realized good and bad volatility

Panel A: Results for good realized volatility
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Panel B: Results for bad realized volatility
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p-values for the R2oob statistic. A positive R2oob statistic indicates that the MOBA model outperforms the core HAR-RV model on predicting
the test data (on average across all simulation runs). The white dot represents the median, the thick black bar denotes the interquartile range,
and the thin black bar denotes ±1.5 times the interquartile range. The boundaries of the shaded area represent kernel density estimates
estimated on the R2oob statistics for the states. The dashed horizontal lines denote the 10% and 5% significance levels.
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Figure 7: Results for an asymmetric loss function

Panel A: Results for a quad-quad loss function
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Panel B: Results for a lin-lin loss function realized volatility
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Results for an asymmetric loss function. For a > 0.5, a forecaster suffers a larger loss from an under-prediction of realized volatility (as
compared to an over-prediction of the same absolute size), and for a < 0.5 an over-prediction gives rise a larger loss than a comparable
under-prediction. A positive r2oob statistic implies that the MOBA model performs better than the core HAR-RV model model. The white dot
represents the median, the thick black bar denotes the interquartile range, and the thin black bar denotes ±1.5 times the interquartile range.
The boundaries of the shaded area represent kernel density estimates estimated on the test results.
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Figure 8: Results for nation-wide and state-level climate risks

Panel A: Nation-wide climate risks only
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Panel B: State-level risks only
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p-values for the R2oob statistic. A positive R2oob statistic indicates that the MOBA model outperforms the core HAR-RV model on predicting
the test data (on average across all simulation runs). The white dot represents the median, the thick black bar denotes the interquartile range,
and the thin black bar denotes ±1.5 times the interquartile range. The boundaries of the shaded area represent kernel density estimates
estimated on the R2oob statistics for the states. The dashed horizontal lines denote the 10% and 5% significance levels.
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Supplementary Material

As briefly discussed in Footnote 2 in the main body of the text, the raw data obtained from

Bloomberg contain periods, usually a very small fraction of the data, during which the state-level

stock-market indices follow a more or less a straight trend. Such peculiar price dynamics probably

indicate that Bloomberg stopped producing the indices during those “gap periods” and interpolated

the resulting gap in the data in retrospect. Given this pattern in the data, it is not surprising that

realized volatility is unusually low during such a gap period.

In order to provide an example of how the gap periods look like, Figure S1 plots the realized

volatilities and the natural logarithm of realized volatilities for two states, Hawaii and Maryland.

The gap periods are hardly discernible in Figure S1 in the plots for realized volatilities. In fact, the

gap periods become only visible in the plots for the log realized volatilities, where the unusually

small realized volatilities during the gap periods translate into large negative realizations of the

logarithm of realized volatility. It should be noted that, while the analysis of the logarithm of

realized volatility, for example, it brings the data closer to normality, Figure S1 clearly illustrates

why it is advantageous, in the case of our state-level data to study realized volatility, rather than its

logarithm.

Figure S1: Examples of the data
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We report some state-level descriptive statistics of the raw (high-frequency) data in Table S1.

Specifically, we report the beginning and end dates for every state along with the total number of

observations of high-frequency data that we used to compute the time series of state-level realized

volatilities. Table S2, in turn, depicts the fraction of the gap periods as percent of the total daily

observations per state. The gap periods are identified by visually inspection of the data as periods

during which the log of realized volatility takes on a value smaller than -6 (-6.5 for Arizona). As we

mentioned in Footnote 2, we remove the gap periods from the data for estimation of the prediction

models.

Table S1: Descriptive statistics of the raw data

State Name Start Date End Date Observations
Alabama 14/9/2011 22/10/2021 216432
Alaska 09/9/2011 22/10/2021 216676
Arizona 13/9/2011 22/10/2021 216434
Arkansas 14/9/2011 22/10/2021 216433
California 13/9/2011 22/10/2021 216519
Colorado 13/9/2011 22/10/2021 216120
Connecticut 15/9/2011 22/10/2021 215984
Delaware 15/9/2011 22/10/2021 215984
Florida 14/9/2011 22/10/2021 216280
Georgia 14/9/2011 22/10/2021 216215
Hawaii 15/9/2011 22/10/2021 216108
Idaho 13/9/2011 22/10/2021 216298
Illinois 14/9/2011 22/10/2021 216131
Indiana 15/9/2011 22/10/2021 216040
Iowa 14/9/2011 22/10/2021 216299
Kansas 13/9/2011 22/10/2021 216415
Kentucky 15/9/2011 22/10/2021 216210
Louisiana 14/9/2011 22/10/2021 216295
Maine 15/9/2011 22/10/2021 216125
Maryland 15/9/2011 22/10/2021 216033
Massachusetts 15/9/2011 22/10/2021 216106
Michigan 14/9/2011 22/10/2021 216130
Minnesota 13/9/2011 22/10/2021 216466
Mississippi 14/9/2011 22/10/2021 216040
Missouri 14/9/2011 22/10/2021 216201
Montana 13/9/2011 22/10/2021 216405
Nebraska 13/9/2011 22/10/2021 216347
Nevada 13/9/2011 22/10/2021 216337
New Hampshire 15/9/2011 22/10/2021 216033
New Jersey 21/9/2011 22/10/2021 215706
New Mexico 13/9/2011 22/10/2021 216233
New York 19/8/2011 22/10/2021 217318
North Carolina 14/9/2011 22/10/2021 216092
North Dakota 13/9/2011 22/10/2021 216139
Ohio 15/9/2011 22/10/2021 216264
Oklahoma 14/9/2011 22/10/2021 216350
Oregon 13/9/2011 22/10/2021 216179
Pennsylvania 14/9/2011 22/10/2021 216118
Rhode Island 15/9/2011 22/10/2021 216323
South Carolina 15/9/2011 22/10/2021 216340
South Dakota 13/9/2011 22/10/2021 216480
Tennessee 14/9/2011 22/10/2021 216344
Texas 09/9/2011 22/10/2021 216604
Utah 13/9/2011 22/10/2021 216516
Vermont 15/9/2011 22/10/2021 216041
Virginia 15/9/2011 22/10/2021 216348
Washington 14/9/2011 22/10/2021 216085
West Virginia 15/9/2011 22/10/2021 216254
Wisconsin 14/9/2011 22/10/2021 216349
Wyoming 13/9/2011 22/10/2021 216308
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Table S2: Fraction of gap periods (in days) as percent of total data

State Fraction (in %)
Alabama 0.79
Alaska 0.35
Arizona 0.71
Arkansas 0.87
California 1.10
Colorado 0.87
Connecticut 0.95
Delaware 1.15
Florida 1.10
Georgia 0.24
Hawaii 0.20
Idaho 0.16
Illinois 0.47
Indiana 1.11
Iowa 1.07
Kansas 0.99
Kentucky 1.10
Louisiana 1.10
Maine 1.11
Maryland 1.07
Massachusetts 0.99
Michigan 1.22
Minnesota 1.07
Mississippi 0.00
Missouri 1.11
Montana 0.91
Nebraska 1.10
Nevada 0.67
New Hampshire 0.51
New Jersey 0.39
New Mexico 0.39
New York 0.04
North Carolina 0.95
North Dakota 1.93
Ohio 1.50
Oklahoma 2.21
Oregon 1.11
Pennsylvania 2.29
Rhode Island 2.25
South Carolina 1.10
South Dakota 0.99
Tennessee 2.21
Texas 2.17
Utah 1.14
Vermont 2.29
Virginia 1.85
Washington 2.29
West Virginia 7.81
Wisconsin 1.70
Wyoming 0.91

Figure S2 depicts the results for an alternative partition of the data into training, validation,

and test samples than that we use in the main body of the text. Specifically, we use a train fraction

of 30%, a validation fraction of 20%, and a test fraction of 50%.
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Figure S2: Results for an alternative partitioning scheme
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p-values for the R2oob statistic. A positive R2oob statistic indicates that the MOBA model outperforms the core HAR-RV model on predicting
the test data (on average across all simulation runs). The white dot represents the median, the thick black bar denotes the interquartile range,
and the thin black bar denotes ±1.5 times the interquartile range. The boundaries of the shaded area represent kernel density estimates
estimated on the R2oob statistics for the states. The dashed horizontal lines denote the 10% and 5% significance levels.
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