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Return Volatility, Correlation, and Hedging of Green and Brown 
Stocks: Is there a Role for Climate Risk Factors? 

Haohua Li*, Elie Bouri**, Rangan Gupta*** and Libing Fang**** 
Abstract 
We examine the effects of three monthly climate risk factors, climate policy uncertainty 
(CPU), climate change news (CCN), and negative climate change news (NCCN) on the 
long-run volatilities and correlation of daily green and brown energy stock returns, and 
perform a hedging analysis. Given that our dataset combines daily and monthly data, 
we rely on mixed data sampling models such as GARCH-MIDAS and DCC-MIDAS 
in standard and asymmetric forms with a bivariate skew-t distribution, which also 
allows us to deal with volatility clustering, asymmetric effects, and negative skewness 
in innovation which characterize our dataset. Firstly, the results of the GARCH-MIDAS 
models show evidence that climate risk contains information useful to improve the 
prediction of return volatility of brown energy stocks. Secondly, the results of the DCC-
MIDAS model indicate that climate risk reduces the green-brown returns correlation, 
suggesting a negative effect and hedging opportunities. Thirdly, the results of the 
hedging analysis show that incorporating a climate risk factor, especially NCCN, into 
the long-run component of dynamic correlation significantly improves the hedging 
performance between green and brown energy stock indices, and this are robust to an 
out-of-sample analysis under various refitting window sizes. These results matter to 
portfolio and risk managers for energy transition and portfolio decarbonization.  
JEL Codes: C32, G00, G11, Q54 
Keywords: Conditional volatility, dynamic correlation, GARCH-MIDAS, DCC-
MIDAS, climate change news (CCN), Climate policy uncertainty (CPU), hedging 
 
 
 
 

                             

* School of Management and Engineering, Nanjing University, No. 5 Pingcang Lane, Gulou District of 
Nanjing, Jiangsu Province, China; Email: hhli@nju.edu.cn. 
** School of Business, Lebanese American University, Byblos, Lebanon; Email: elie.elbouri@lau.edu.lb. 
*** Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; 
Email: rangan.gupta@up.ac.za. 
**** Corresponding author. School of Management and Engineering, Nanjing University, No. 5 Pingcang 
Lane, Gulou District of Nanjing, Jiangsu Province, China; Email: lbfang@nju.edu.cn. 



2 
 

 
Highlights 

 We extend the symmetric DCC-MIDAS model to an asymmetric DCC-
MIDAS model with bivariate skew-t to include negative skewness in 
innovation.  

 The long-run volatilities of brown stock significantly increase with the climate 
risk factors, but the green do not. 

 The negative climate change news index has a larger effect on the long-run 
volatilities of brown stock. 

 The long-run correlation between brown and green stock index returns 
decreases significantly with an increase in climate risk factors, especially the 
negative climate change news index. 

 The hedging performance between the two stock indices can be significantly 
improved by inserting the climate risk factor into the long-run component of 
dynamic correlation. 
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1 Introduction 

The deteriorating conditions of the earth's climate in response to accumulating and 
rising greenhouse gas emissions are set to have an important economic impact and 
cause damage at a global scale. This has led to the adoption of the UN Framework 
Convention on Climate Change (UNFCCC), the Kyoto Protocol, and the Paris 
Agreement. The Climate Change Conferences (COPs) constantly review these 
frameworks to ensure that the necessary decisions and actions plans are made for 
smooth and timely implementations. On the financial scene, a major theme in capital 
markets and investments is the transition to eco-friendly and green assets. This 
particularly targets the polluting brown energy sector, making investment in green and 
clean energy companies gain significant ground, and related stock indices, such as the 
WilderHill energy index, have emerged as a major benchmark in the area of clean 
energy stock investment.  

In parallel, the academic literature has experienced huge growth in the field of the 
relationship between green and clean assets (Ferrer et al., 2018; Maghyereh et al., 2019; 
Fahmy, 2022; Saeed et al., 2020a, b; Dutta et al., 2020; Yousaf et al., 2022; Gauthier et 
al., 2023)1 and the portfolio implications, but less evidence exists regarding the pricing 
of these assets and their interrelationships under the impact of climate risk. On the one 
hand, some studies argue that firms’ decisions to reduce greenhouse gas emissions are 
                             

1 Ferrer et al. (2018) show that the frequency-based spillovers of return and volatility across crude oil, 
and green, brown, and conventional stock markets occur in the short term and that the performance of 
green energy stocks is driven by crude oil prices. Maghyereh et al. (2019) also apply wavelets and 
consider conditional correlation models, and their results indicate the presence of long-term return and 
volatility linkages between crude oil and clean energy stocks. However, Fahmy (2022) finds that the 
return linkages ease after the Paris Agreement. Saeed et al. (2020a) show that clean energy stocks serve 
to hedge the risk of brown energy, notably crude oil prices, more effectively than green bonds. Saeed et 
al. (2020b) provide evidence of tail dependence among clean energy stocks, green bonds, and brown 
energy (e.g., crude oil and energy exchange-traded funds), which is affected by crude oil market 
uncertainty. Dutta et al. (2020) provide evidence that energy sector volatility has an impact on clean 
energy stock returns that differs between the volatility levels of the energy sector. Furthermore, changes 
in the level of energy sector volatility matters to the volatility of clean energy stocks. Yousaf et al. (2022) 
consider the hedging of green assets against conventional stock markets, indicating their hedging role, 
especially during the pandemic. Gauthier et al. (2023) examine the scale-based co-movement between 
crude oil prices and various renewable stock indices covering solar, wind, bio, and geothermal energy, 
showing that the co-movement is nonlinear and varies across time and investment horizons. 
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driven by the uncertainty surrounding climate policy regulation (Lopez et al., 2017) and 
that investors move away from brown companies to green companies when 
uncertainties about climate change increase (Pástor et al., 2021). In this regard, Choi et 
al. (2020) indicate that retail investors drop their investments in carbon-intensive 
companies when the temperature rises to very high levels. Hsu et al. (2020) find that 
uncertainty in environmental policies and regulations have a significant impact on the 
cross-section of emission portfolio returns. Engle et al. (2020) construct monthly 
climate change measures and argue that climate risk can affect firms’ investment 
decisions. On the other hand, some studies consider the impact of the climate policy 
uncertainty index. For example, Bouri et al. (2022) show that the ratio of green over 
brown energy stock prices is impacted by the level of climate policy uncertainty, and 
that during periods of high climate policy uncertainty green energy stocks outperform 
their brown counterparts because of the switch of investors from brown to green energy 
investment. A quite similar conclusion is reported by Dutta et al. (2023) who find that 
high levels of climate policy uncertainty make investment in green energy more 
appealing and thus their prices increase and their volatility decreases, which might be 
associated with the safe-haven property of green assets, as argued by Bouri et al. (2019). 
Dutta et al. (2023) further show that green energy investments can hedge the downside 
risk of crude oil returns. Sarker et al. (2022) examine the impact of climate policy 
uncertainty on clean energy stocks in a non-linear autoregressive distributed lags 
(ARDL) model. They find an impact that differs between the short and long term, which 
points to an asymmetry and provides evidence that changes in climate policy 
uncertainty have a stronger impact on the volatility than the return of clean energy 
stocks in the long term2. 

While the above studies are useful and point to the importance of climate policy 
uncertainty on the returns of green and brown energy assets, they leave room for 
extension on at least two fronts. Firstly, most studies consider the monthly climate 
policy uncertainty (CPU) index only, covering exclusively news about climate policy 
                             

2 Shang et al. (2022) show that CPU reduces the demand for non-renewable energy whereas it increases 
the renewable energy demand in the long term. 
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uncertainty and thus overlooking all other news related to climate change, including 
physical climate risk such as natural disasters and negative climate change sentiment. 
Interestingly, the availability of other monthly indices such as the Climate Change 
News (CCN) index and the negative climate change news (NCCN) index proposed by 
Engle et al. (2020) offers an opportunity for researchers to assess the multifaceted 
characteristics of climate risks for the price dynamics of green and brown energy stocks 
more comprehensively. In this regard, these two climate change news indices and the 
CPU index differ but are somewhat complementary, which enriches our analysis and 
allows us to detect potential heterogeneity in their impact within our methodological 
framework, extending studies that tend to consider only one aspect of climate risk 
covering policy uncertainty (Bouri et al., 2022; Sarker et al., 2022; Dutta et al., 2023). 
In fact, the correlation between the CPU and CCN indices is low (0.41), as shown by 
Gavriilidis (2021). Specifically, the CPU covers exclusively news about climate policy 
uncertainty, whereas CCN and NCCN cover news related to climate change, including 
natural disasters, and climate change sentiment. Secondly, the related literature remains 
silent on how climate policy uncertainty and climate change news indices affect the 
volatility, correlation, and hedging of green and brown energy stocks. This is important, 
given that these two energy assets are often found in the portfolios of global institutional 
investors, which makes any granulated information on the climate risk factors’ effect 
on their volatility or correlation highly appreciated by investors and policymakers who 
are worried about long-term climate risks and their impact on the hedging role of clean 
against brown energy investment strategies. Specifically, addressing this research gap 
has potential implications for volatility modelling and forecasting, portfolio allocation, 
sector rotation, derivative pricing, risk management, and financial stability under 
energy transition.  

In this paper, we examine the impact of various climate risks on the volatility and 
correlation of green and brown energy stocks and their inferences for hedging 
possibilities.  

Using three climate risk indices, CPU, CCN, and NCCN, covering the transitional 
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and physical dimensions of climate risk, we rely on mixed data sampling models, 
namely the GARCH-MIDAS model of Engle et al. (2013) and the asymmetric and 
symmetric DCC-MIDAS models of Colacito et al. (2011). Notably, we extend the 
asymmetric DCC-MIDS model by considering the bivariate skew-t to include negative 
skewness in innovation. These models are suitable for our case, because: (1) the 
GARCH-MIDAS model allows us to directly examine how the long-run volatilities of 
green and brown energy stocks are affected by climate risks; (2) the DCC-MIDAS 
model helps us examine the effect of climate risks on the correlation between green and 
brown energy stocks while decomposing the correlation into long- and short-run 
components; (3) both models combine daily returns of green and brown energy stocks 
with monthly levels of climate risk indices; and (4) these models are extended from 
symmetric to asymmetric form to account for the leverage effect often found in energy 
stocks. Importantly, the asymmetric DCC-MIDAS model is employed with bivariate 
skew-t to include negative skewness in innovation, which constitutes a methodological 
extension to previous studies.  

Our current study is related to a growing strand of literature on environmental 
firms (Huang, 2021) and climate finance, highlighting the impact of climate risk on 
asset pricing (e.g. Choi et al., 2020; Engle et al., 2020; Bolton & Kacperczyk, 2021; 
Pástor et al., 2021) and the co-movement between assets such as commodities and their 
financial stability (Flori et al., 2021). It is related to the study of Liang et al. (2022), 
who apply a GARCH-MIDAS model and show that CPU has a significant predictive 
power for the long-term volatility of renewable energy. However, our current study 
differs in both the scope and methods applied, given that we use three climate risk 
measures, consider the impact of climate risk on the correlation between green and 
brown energy stocks, and make hedging inferences. Equally, our analysis differs from 
that of Dutta et al. (2023), who consider monthly data, use one dimension of climate 
risk, and overlook the correlation between green and brown stocks and the portfolio 
and hedging implications. 

Our main results offer evidence from a new perspective, showing that all the 
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climate risk indices used in the study contain useful information for improving the 
prediction of the return volatility of brown stock, reducing the green-brown returns 
correlation, and making the hedging between brown and clean energy stocks cheaper 
and more effective, especially when negative climate change news is incorporated into 
the long-run component of dynamic correlation.  

The rest of the paper is divided into four sections. Section 2 describes the research 
design, including the GARCH-MIDAS and DCC-MIDAS models. Section 3 provides 
the dataset on green and brown energy stock indices and the climate risk factors. Section 
4 presents and discusses the results on the conditional volatility and conditional 
correlation. Section 5 assesses the hedging performance under the impact of climate 
risk factors. Section 6 concludes with some policy implications.  

2 Methodology 
We model the green and brown energy stock index returns using four GARCH-

type models, standard GARCH, GRJGARCH, EGARCH, and APARCH. For the 
exogenous shocks from climate risk factors, we choose the Wall Street Journal (WSJ) 
climate change news (CCN) index and Crimson Hexagon (HE) negative climate change 
news index (NCC) proposed by Engle et al. (2020), and the Climate Policy Uncertainty 
index (CPU) of Gavriilidis (2021).  

Specifically, the impact of various climate risks as exogenous shocks on the long-
run volatility and dynamic correlation of brown and green energy stock returns is 
examined in a multistep approach. In the first step, we insert each of the three climate 
risk measures into the long-run component of GARCH-MIDAS specification on the 
volatility of brown and green energy stock index returns. We extend the conditional 
distribution to include non-zero skewness and excess kurtosis of innovation. The results 
of this step show the impact of various climate risks on the long-run volatilities of 
brown and green stock returns by assuming the index returns follow univariate time-
varying processes. In the second step, we insert each of the three climate risk measures 
into the long-run component of the DCC-MIDAS specification of the correlation of 
brown and green energy stock index returns. We extend the standard DCC-MIDAS to 
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include the non-zero skewness and excess kurtosis of the innovation distribution, and 
asymmetric effect of innovation on short- and long-run correlations. The results of this 
step show the impact of various climate risks on the long-run correlations of brown and 
green stock returns by assuming the two indices' returns follow bivariate time-varying 
processes. The third step consists of proposing a portfolio strategy to hedge brown 
energy with green energy accounting for the impact of climate on the correlation 
estimation. 

2.1 GARCH models 
The standard univariate GARCH and its generalized specifications are used as 

basic specifications for the volatilities of the green and brown energy stock index 
returns. The GARCH (1,1) model has the most concise form. Based on the same 
frequency data, it is described as: 
௧ݎ  − ௧ߤ  =  ௧ (1)ߝ 
 ε୲  =  ඥσ୲ଶz୲ (2) 
௧ଶߪ  = ߱ + ௧ିଵଶߝߙ  + ௧ିଵଶߪߚ   (3) 
where ݎ௧ is the natural logarithmic rate of returns from the green or brown energy stock 
index; the conditional mean is ߤ௧ = ௧ݎ)௧ିଵܧ  )  = ߤ  −  ௧ିଵ as commonly used inݎߩ
the literature; ߝ௧  is the innovations that are standardized to be ݖ௧  by ߪ௧ , the 
conditional standard deviation; ω, α, and β are the estimated coefficients. ω > 0, α ≥ 0, 
β ≥ 0 and α + β < 1 are used to ensure the nonnegativity and stationarity of the variance 
process.  

The GJRGARCH is widely used to describe the "leverage effect", the asymmetric 
shock by positive and negative innovation to the volatilities, where negative return 
shocks exert a larger impact on future conditional volatility than positive return shocks: 

௧ଶߪ  = ߱ + ௧ିଵଶߝߙ + ௧ିଵିܫߛ ௧ିଵଶߝ + ௧ିଵଶߪߚ  (4) 

where ܫ௧ିଵି = 1 if ߝ௧ିଵ < 0, otherwise ܫ௧ିଵି = 0. 
Exponential GARCH (EGARCH), proposed by Nelson (1991), is also a commonly 
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used model to describe the asymmetric volatility:  

 ln ߪ௧ଶ = ߱ + |௧ିଵݖ|)ߙ  − (|௧ିଵݖ|ܧ + ௧ିଵݖߛ + ௧ିଵଶߪ lnߚ   (5) 

Following Ding et al. (1993), we include the asymmetric power GARCH 
(APARCH) for long memory property: 

 (ඥߪ௧)ఋ = ߱ + | ௧ିଵߝ |)ߙ  − ௧ିଵ)ఋߝߛ +  ఋ (6)(௧ିଵߪඥ)ߚ 

For the conditional distribution of the standardized innovations, we introduce Hansen’s 
(1994) skewed t distribution: 

Skew-t(ݖ௧|ߣ, (ߟ = ܥܤ ൮1 + 1
ߟ − 2 ቌ ௧ݖܤ + ܣ

1 + sgn( ݖ௧ + ቍߣ(ܤܣ
ଶ

൲
ି(ఎାଵ)/ଶ

 

where ߣ and ߟ are the coefficient of skewness and degree of freedom, sgn(ݔ) is the 
sign function of x; and the constants ܤ ,ܣ, and ܥ are given by: 

ܣ = ܥߣ4 ఎିଶ
ఎିଵ,   ܤ = √1 + ଶߣ3 − ܥ   ,ଶܣ = ௰((ആశభ)

మ )
ඥగ(ఎିଶ)௰(ആ

మ)  
where ߣ > 0  and ߣ < 0  indicate that the distribution is positively and negatively 
skewed, respectively. The larger |ߣ| , the larger the skewness. When ߣ = 0 , the 
distribution is symmetric and thus reduced to a standard t distribution. The degree of 
freedom, ߟ, captures the excess kurtosis, which is consistent with the tail heaviness. 
Besides these two distributions, we also consider a normal distribution in the standard 
way. 

2.2 GARCH-MIDAS models 
Compared to the GARCH model based on the same frequency data, the GARCH-

MIDAS model decomposes the volatility into short- and long-run components. In 
practice, the short-run volatility component of the GARCH-MIDAS model is assumed 
to be temporarily shocked by innovations (in high frequency), while the long-run 
component is more likely to be related to fundamental/microeconomic factors that are 
usually low frequency, such as climate risk in the present work. 
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Suppose ݎ௧,ఛ  is the return on day t of period τ that is low frequency, such as 
monthly, quarterly or yearly, the short-run volatility changes at the daily frequency t, 
and long-run volatility changes at the period frequency τ. As suggested by Engle, 
Ghysels, and Sohn (2008), we assume the daily conditional variance in period τ to 
be ටߪ௧,ఛଶ  =  ඥ݉ఛ ×  ݃௧,ఛ, where ݃௧,ఛ is the daily volatility (short-run component) 
and ݉ఛ denotes the long-run component. Generalized from the standard GARCH as 
Eq. (3), ݃௧,ఛ is specified as: 
 ݃௧,ఛ =  ߱ + ߙ  ఌ೟షభ,ഓమ

௠ഓ +  ௧ିଵ,ఛ (7)݃ߚ 
where ߝ௧,ఛ is the innovation of the green or brown stock index returns as defined in Eq. 
(1) and Eq. (2). Engle et al. (2013) specify ݉ఛ by smoothing the realized volatility or 
macroeconomic (exogenous) variable in the spirit of MIDAS regression: 

 ln ݉ఛ =  ݉ + ∑ ߠ  ߮௞(௄௞ୀଵ ,ݓ 1)ܺఛି௞ (8) 

where ܺఛି௞ is the low-frequency part, such as the climate risk index. Notably, we use 
the innovation of ܺఛି௞  from the AR(1) regression as Engle et al. (2020) suggests, 
where K is the maximum lag.  ߮௞(ݓଵ,  ଶ) is a weight equation based on the betaݓ
function and described as:  

 ߶௞(ݓଵ, (ଶݓ = (௞/௄)ೢభషభ(ଵି௞/௄)ೢమషభ
∑ ( ೕ

಼)ೢభషభ(ଵି ೕ
಼)ೢమషభೕ಼సభ

 (9) 

where we set ݓଶ  =  1  as suggested by Engle et al. (2008) and Colacito et al. (2011). 
Similar to Eq. (7), we also decompose the daily conditional volatility ߪ௧ଶ  as in 
GJRGARCH, EGARCH, and APARCH, into two components in the MIDAS 
regression. We omit the details here, but the reader can refer to the work of Amendola 
et al. (2019, 2021). 

2.3 DCC-MIDAS models 
The dynamic correlation model of mixed data sampling (DCC-MIDAS) is based 

on the DCC model of Engle (2002) and the GARCH-MIDAS model of Engle et al. 
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(2008). Among them, the DCC-MIDAS model mainly examines the impact of the long-
run components extracted by mixed data sampling on the long-run fluctuation and 
dynamic correlation of financial time series, in our case the returns of green and brown 
stocks. 

Specifically, for each asset ݅, ݆ = 1,2 to denote the green and brown stock indices. 
The univariate return series satisfies the GARCH-MIDAS process. The conditional 
correlation between them at daily frequency t is: 

௜,௝,௧ߩ  = ௤೔,ೕ,೟
ඥ௤೔,೔,೟ ඥ௤ೕ,ೕ,೟ (10) 

We adopt Colacito, Engle, and Ghysels’ (2011) version of the multivariate DCC-
MIDAS model in which the covariates directly affect the long-run component of green 
and brown stock index returns. That is, ݍ௜,௝,௧ is given by: 

௜,௝,௧ݍ  = ௜,௝,ఛ(1ߩ̅  − ܽ − ܾ) + ௝,௧ିଵߝ௜,௧ିଵߝܽ +  ௜,௝,௧ିଵ (11)ݍܾ

where ̅ߩ௜,௝,ఛ is the long-run component of conditional correlation given by: 

௜,௝,ఛߩ̅  = ∑ ߮௟(௅௟ୀଵ ௖ݓ ,  ఛି௟ (12)ܥ(1

where ܥఛ  is the averaged conditional correlation of ߝ௜,௧  and ߝ௝,௧  in period τ. To 
capture the effect of climate risk on the long-run correlation, we also introduce the 
effect directly into Eq. (12) following the spirit of Eq. (8). The difference is that a 
logistic transformation (ݔ)߉ is needed to make a valid definition of correlation: 

௜,௝,ఛߩ̅  = ఛݔ   ,(ఛݔ2)߉ = ݉௖ + ௖ߠ ∑ ߮௟(௅௟ୀଵ ,௖ݓ 1)ܺఛି௟ (13) 

where ܺఛ is the low-frequency part which is set to be climate risk index in our present 
work. 

Motivated by the ADCC-GARCH model of Cappiello et al. (2006), we follow 
Amendola et al. (2019) and introduce an asymmetric term into the standard DCC model: 
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௜,௝,௧ݍ  = ௜,௝,ఛ(1ߩ̅  − ܽ − ܾ) − ݃ ത݊௜,௝,ఛ + ௝,௧ିଵߝ௜,௧ିଵߝܽ +  ݃݊௜,௧ିଵ ௝݊,௧ିଵ +  ௜,௝,௧ିଵ (14)ݍܾ

where ݊௜,௧ = min (ߝ௜,௧, 0), and ത݊௜,௝,ఛ is the average of ݊௜,௧ିଵ ௝݊,௧ିଵ in period τ. 
In addition to the multivariate normal distribution, we introduce the bivariate 

skew-t distribution (bskew-t) proposed by Bauwens and Laurent (2005) to 
accommodate the leptokurtosis and non-zero skewness in the standardized innovations 
 :௜. The density function isݖ

ݓ݁݇ݏܾ − ,ν|ݖ)ݐ λଵ, λଶ) = C ൮ෑ 2ܾ
λ௜ + 1λ௜

ଶ

௜ୀଵ
൲ ቆ1 + ∗ݖᇲ∗ݖ

ν − 2ቇ
஝ାଶଶ

 

where λଵ, λଶ  are the skewness parameters, ν  is the degrees of freedom parameter, 
∗ݖ = ൫ݖ௜∗, ∗௜ݖ , ௝∗൯ᇱݖ = (ܾ௜ݖ௜ + ܽ௜)λ௜

ூ೔ , the indicator function ܫ௜ = 1  if ݖ௜ < ܽ௜/ܾ௜ , 
otherwise, ܫ௜ = −1; and the constants ܽ௜, ܾ௜ and ܥ are: 

ܽ௜ = ୻ቀೡషభ
మ ቁ√௩ିଶ

√గ୻ቀೡ
మቁ ቀλ௜ − ଵ

஛೔ቁ , ܾ௜ଶ = ቀλ௜ + ଵ
஛೔ − 1ቁ − ܽ௜ଶ , ܥ = ୻ቀೡశమ

మ ቁ
గ(௩ିଶ)୻ቀೡ

మቁ 

With this density function, the log-likelihood function is directly equivalent to that of 
Cappiello et al. (2006). 

3 Data 
We combine daily brown and green energy stocks data with monthly observations 

of climate risk data. Our sample period ends in March 2021 when we coded the models 
in Section 2. The final sample period relies on the merging of results when we apply 
the GARCH-MIDAS and DCC-MIDAS models. For example, when we use GARCH-
MIDAS with CCN, the final sample period ends in June 2017 because of the availability 
of CCN. However, when we use GARCH-MIDAS with CPU, the final sample period 
ends in March 20213. 

3.1 Green and brown energy stock indices  
We measure the performance of green energy stocks using the WilderHill clean 

                             

3 Although updated data is now available, at the time of writing the paper and model estimation, data 
were available till June 2017 for CCN and March 2021 for CPU.  



13 
 

energy index which has a varied scope covering the universe of businesses that are 
positioned to benefit from a transition to cleaner energy from wind, solar, biofuels, and 
geothermal companies. These companies belong to various sectors such as industrials, 
technology, consumer discretionary, materials, and utilities. Their selection is dictated 
by their contribution to the progress of clean energy in an ecological and economic 
manner. For the performance of brown energy stocks, we use the S&P500 Energy 
Sector Index, which covers the energy sector of the S&P 500 Index, represented by 
companies belonging to the oil, gas and consumable fuel, energy equipment and 
services industries, such as Exxon Mobil Corporation, Chevron Corporation, and 
ConocoPhillips. Data on both indices are USD-denominated. They are collected from 
DataStream. The sample period begins from January 1, 2001 when both indices’ data 
are available, and ends on March 31, 2021, when we began the present work. 
3.2 Climate risk data 

We consider three climate risk measures, the Climate Policy Uncertainty (CPU) 
index of Gavriilidis (2021)4, and the Wall Street Journal Climate Change News (CCN) 
index and Negative Climate Change News (NCCN) index proposed by Engle et al. 
(2020)5. 

The CPU index is developed in Measuring Climate Policy Uncertainty (Gavriilidis, 
2021), in which the author searches for articles in eight leading US newspapers 
containing the terms {"uncertainty" or "uncertain"} and {"carbon dioxide" or "climate" 
or "climate risk" or "greenhouse gas emissions" or "greenhouse" or "CO2" or 
"emissions" or "global warming" or "climate change" or "green energy" or "renewable 
energy" or "environmental"} and ("regulation" or "legislation" or "White House" or 
"Congress" or "EPA" or "law" or "policy"} from January 2000 to March 2021. The 
eight newspapers are the Boston Globe, Chicago Tribune, Los Angeles Times, Miami 
Herald, New York Times, Tampa Bay Times, USA Today and Wall Street Journal. For 
each newspaper, Gavriilidis (2021) scales the number of relevant articles per month to 

                             

4 CPU data are extracted from http://policyuncertainty.com/climate_uncertainty.html. 
5 Data on CCN and NCCN indices are shared by Engle et al. (2020). 
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the total number of articles during the same month. The eight series are standardized to 
have a unit standard deviation and averaged across newspapers by month. Finally, the 
averaged series are normalized to have a mean value of 100 for the period January 2000 
to March 2021. 

The CCN and NCCN indices are developed by Engle et al. (2020), who compare 
news content to a corpus of authoritative texts on the subject of climate change. In 
particular, they collect 19 climate change white papers from sources such as the 
Intergovernmental Panel on Climate Change (IPCC), and complement these with 55 
climate change glossaries from sources such as the United Nations, NASA, IPCC, EPA, 
and others. They aggregate the seventy-four text documents into a “Climate Change 
Vocabulary” (CCV), which amounts to a list of unique terms (stemmed unigrams and 
bigrams) and the associated frequency with which each term appears in the aggregated 
corpus. They form an analogous list of term counts for the WSJ. Each (daily) edition of 
the WSJ is treated as a “document”, and term counts are tallied separately for each 
document. They convert the WSJ term counts into “term frequency-inverse document 
frequency”, or tf-idf, scores. Common terms that appear in most documents earn low 
scores because they are less informative about any individual document’s content (they 
have low idf), as do terms that are rare in a given article (they have low tf). The tf-idf 
transformation defines the most representative terms in a given document to be those 
that appear infrequently overall, but frequently in that specific document (see Gentzkow, 
Kelly, and Taddy, 2018). As with the WSJ, they convert the CCV term counts into tf-
idf. They treat the aggregated CCV as a single document when calculating term 
frequencies, and apply the inverse document frequency calculation from the WSJ 
corpus. Finally, they construct the daily climate change index as the “cosine similarity” 
between the tf-idf scores for the CCV and each daily WSJ edition. Days in which the 
WSJ uses the same terms in the same proportion as the CCV earn an index value of one, 
while days in which the WSJ uses no words from the CCV earn an index value of zero. 
Approximately speaking, the raw WSJ Climate Change News Index describes the 
fraction of the WSJ dedicated to the topic of climate change each day, as defined by the 
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texts that underlie the CCV. They scale this index by a factor of 10,000 to allow 
interpretation of the magnitudes of innovations in the index. Engle et al. (2021) define 
the NCCN index as the share of all news articles from the rich Crimson Hexagon (CH) 
database that are both about “climate change” and that have been assigned to the 
“negative sentiment” category. The WSJ CCN covers January 1984 to June 2017 and 
CH NCCN covers the period July 2008 to May 2018. 
3.3 Descriptive statistics 

As stated in Section 3.1 and 3.2, the sample periods of the climate risk factors vary 
because of data availability. Therefore, we show the summary statistics with the sample 
period determined after merging the related variables used in our empirical work. 
Specifically, the sample period covers January 2001 to June 2017 for CCN, July 2008 
to May 2018 for NCCN, and January 2001 to March 2021 for CPU. For the brown and 
green stock indices, we report the summary statistics with the largest sample period 
according to the climate risk factors, that is January 1, 2001 to March 31, 2021. 
Table 1 Descriptive statistics 

 
Panel A: Brown and green energy Panel B: Climate risks 

Brown energy 
stock returns 

Green energy 
stock returns CCN index NCCN index CPU index 

Raw GARCH Raw GARCH Raw AR1 Raw AR1 Raw AR1 
mean 0.01 -0.04 0.00 -0.03 0.64 0.04 0.21 0.00 1.04 -0.00 
std 1.77 1.77 2.07 2.07 0.21 0.19 0.12 0.07 0.83 14.99 
min -22.42 -22.63 -16.24 -16.52 0.34 -0.62 0.08 -0.31 0.04 -4.6E2 
Q(5%) -2.64 -2.70 -3.24 -3.26 0.39 -0.20 0.10 -0.08 0.15 -1.55 
Q(10%) -1.79 -1.85 -2.35 -2.37 0.42 -0.14 0.11 -0.06 0.23 -1.38 
Q(20%) -1.03 -1.07 -1.34 -1.36 0.48 -0.09 0.12 -0.04 0.37 -1.14 
Median 0.00 -0.02 0.02 0.01 0.61 0.03 0.17 -0.01 0.88 -0.28 
Q(80%) 1.10 1.06 1.36 1.33 0.77 0.15 0.29 0.04 1.57 0.96 
Q(90%) 1.76 1.72 2.11 2.08 0.89 0.22 0.37 0.08 2.04 1.92 
Q(95%) 2.41 2.37 3.00 2.98 0.99 0.34 0.45 0.14 2.63 3.16 
max 16.96 16.67 14.52 14.27 1.94 1.09 0.71 0.31 6.29 4.89E2 
Skew -0.67 -0.73 -0.37 -0.32 2.17 1.54 1.90 0.51 2.00 1.25 
Kurt 16.23 16.26 5.68 5.68 8.97 7.32 4.13 4.5 6.87 418.46 
JB-stats 5.82E3 5.86E3 7.2E3 7.2E3 1.8E4 1.1E4 3.4E4 2.3E3 1.3E4 3.85E7 
Sample 
Period 

Jan. 1 2001-Mar. 31 2021 
(Daily #obs.: 5283) 

Jan. 2001-Jun. 2017 
(Monthly #obs.: 198) 

Jul. 2008-May. 2018 
(Monthly #obs.: 108) 

Jan. 2001-Mar. 2021 
(Monthly #obs.: 243) 

Note: We report the descriptive statistics of the raw returns of brown and green stock index, and their innovations 
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filtered by GARCH(1,1). AR1 denotes the first-order autoregression. Climate risk factors include the CCN and 
NCCN (negative change counterpart of WSJ) shared by Engle et al. (2020), and CPU from Gavriilidis (2021). We 
present the statistical significance of skewness and excess kurtosis (kurtosis minus 3) with the assumption of 
normality, that is, zero-mean and ඥ6 ܶ⁄  and ඥ24 ܶ⁄  standard deviation respectively. JB-stats indicates the Jarque-
Bera test result for the assumption of normality. The results in bold are statistically significant at the 5% level. 

Panel A of Table 1 provides summary statistics for the energy stock return series. 
While the sample mean of the returns is positive for both the green and brown energy 
stock indices, the unconditional standard deviation of the green energy stocks returns 
(2.054) is higher than that of the brown energy stock returns (1.782). Panel B of Table 
1 provides the descriptive statistics for the climate risk data, where the mean of CPU is 
the largest and has the highest standard deviation. 

Figure 1 The dynamics of brown and green stock indices with CCN, NCCN, and 
CPU 

 

 

 

Figure 1 shows the dynamics of the brown and green stock indices with CCN, 
NCCN, and CPU. To make the data comparable, we scale each series to [0,1] and draw 
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them in each panel relative to each climate risk factor. From Figure 1, we can see that 
the brown energy index fluctuates much more than the green energy index. Furthermore, 
CCN seems much more correlated with the two energy indices. Specifically, the 
monthly returns of the brown stock index are correlated to CCN, NCCN, and CPU with 
Pearson coefficients6  of 0.049, -0.263 and 0.006, respectively, while the monthly 
returns of the green stock index are correlated by 0.100, -0.178 and 0.137, respectively. 

4 The effect of climate risk on long-run volatility and correlation 
We first present the long-run volatilities of the brown and green stock indices and 

how they relate to the climate risk factors based on GARCH-MIDAS with various 
specifications of structure and conditional distribution. We then show the relation of the 
climate risk factors to the long-run correlations between the brown and green stock 
index returns based on various DCC-MIDAS specifications. 
4.1 The effect of climate risk on the long-run volatility of brown and green 

energy stock indices 
Tables 2 and 3 present the estimated results of the impact of the WSJ climate risk 

factor on the brown and green stock index long-run volatilities based on GARCH-
MIDAS, GJRGARCH-MIDAS, EGARCH-MIDAS and APARCH-MIDAS with the 
conditional distribution of standard t and skew-t. To ensure comparability across all 
specifications, we choose K = 12 for both returns. We see that the estimated ߙ and ߚ 
in Tables 2 and 3 are all significantly positive, and ߙ +  is near to one for both energy ߚ
stock returns. That is, the short-run volatility component for all specifications is mean-
reverting to the long-run trend.  

Both Table 2 and Table 3 show that the ߛ parameters in the GJRGARCH-MIDAS 
and APARCH-MIDAS models are significantly positive, and in the EGARCH-MIDAS 
model are significantly negative. That is, the "leverage effect" measured by ߛ   is 
consistent with the common knowledge that a negative innovation leads to larger 
                             

6 The coefficients are calculated based on all observations with each pair of series. 
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conditional volatility in the next period than a positive innovation of the same 
magnitude. The diagnostic statistics, LLF, AIC, and BIC, consistently show that the 
model fitness is better when we use the conditional distribution with skewness 
parameter (ߣ). All the estimated results of ߣ are significantly negative, implying that 
both energy stock returns are significantly and negatively skewed, which is consistent 
with common knowledge. Finally, all the diagnostic statistics suggest that EGARCH-
MIDAS with skew-t distribution has the best fitting performance. 

Table 2 Conditional volatility of brown energy stock index with the climate risk 
factor CCN 

Coef. GARCH-MIDAS GJRGARCH-MIDAS EGARCH-MIDAS APARCH-MIDAS 
Std-t Skew-t Std-t Skew-t Std-t Skew-t Std-t Skew-t 

߱ 0.025*** 
(0.007) 

0.024*** 
(0.007) 

0.029*** 
(0.008) 

0.030*** 
(0.008) 

0.011*** 
(0.003) 

0.012*** 
(0.003) 

0.024*** 
(0.006) 

0.025*** 
(0.006) 

 ***0.072 ߙ
(0.010) 

0.074*** 
(0.010) 

0.020** 
(0.009) 

0.019** 
(0.008) 

0.124*** 
(0.015) 

0.123*** 
(0.014) 

0.063*** 
(0.009) 

0.063*** 
(0.009) 

 ***0.918 ߚ
(0.356) 

0.913*** 
(0.335) 

0.912*** 
(0.290) 

0.925*** 
(0.358) 

0.986*** 
(0.003) 

0.987*** 
(0.003) 

0.919*** 
(0.306) 

0.913*** 
(0.333) 

 ***0.083   ߛ
(0.015) 

0.084*** 
(0.015) 

-0.068*** 
(0.010) 

-0.069*** 
(0.010) 

0.535*** 
(0.110) 

0.559*** 
(0.110) 

 ***1.314       ߜ
(0.204) 

1.296*** 
(0.188) 

m 0.181*** 
(0.022) 

0.176*** 
(0.023) 

0.189*** 
(0.022) 

0.167*** 
(0.023) 

0.390*** 
(0.013) 

0.336*** 
(0.018) 

0.339*** 
(0.018) 

0.347*** 
(0.018) 

 ***0.192 ߠ
(0.033) 

0.240** 
(0.117) 

0.310*** 
(0.103) 

0.233*** 
(0.035) 

0.183*** 
(0.032) 

0.220** 
(0.092) 

0.155** 
(0.063) 

0.197*** 
(0.033) 

 ***7.032 ݓ
(2.126) 

6.200*** 
(1.760) 

6.536*** 
(2.365) 

6.200*** 
(1.729) 

8.152*** 
(2.384) 

9.898*** 
(3.582) 

6.321*** 
(1.819) 

6.852*** 
(2.030) 

η 8.955*** 
(1.155) 

9.868*** 
(1.376) 

9.795*** 
(1.373) 

10.813*** 
(1.637) 

9.799*** 
(1.354) 

10.812*** 
(1.613) 

9.941*** 
(1.402) 

10.979*** 
(1.670) 

 ***0.098-  ߣ
(0.021)  -0.107*** 

(0.021)  -0.108*** 
(0.022)  -0.110*** 

(0.021) 
LLF -7375.96 -7365.49 -7355.00 -7342.64 -7350.93 -7313.69 -7353.98 -7340.86 
AIC 14765.91 14746.97 14726.00 14703.27 14719.86 14665.38 14723.97 14699.72 
BIC 14810.49 14797.91 14776.94 14760.58 14777.17 14755.26 14774.91 14757.03 
Notes: This table shows the estimated results of the short- and long-run volatility of brown energy stock returns 
where the exogenous variable for long-run volatility is CCN. For robustness, we consider various models of 
GARCH-MIDAS, GJRGARCH-MIDAS, EGARCH-MIDAS, and APARCH-MIDAS with conditional distribution 
of standard-t (Std-t) and skewed t (Skew-t). LLF, AIC and BIC are diagnostic statistics that indicate log-likelihood 
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function value, Akaike information criterion and Bayesian information criterion. Standard errors are presented in 
parentheses. *p <.1; **p <.05; ***p <.01. 

Table 3 Conditional volatility of green energy stock index with climate risk factor 
CCN 

Coef. GARCH-MIDAS GJRGARCH-MIDAS EGARCH-MIDAS APARCH-MIDAS 
Std-t Skew-t Std-t Skew-t Std-t Skew-t Std-t Skew-t 

߱ 0.057*** 
(0.018) 

0.057*** 
(0.017) 

0.071*** 
(0.020) 

0.073*** 
(0.020) 

0.025*** 
(0.007) 

0.026*** 
(0.007) 

0.079*** 
(0.026) 

0.082*** 
(0.026) 

 ***0.077 ߙ
(0.013) 

0.076*** 
(0.012) 

0.041*** 
(0.010) 

0.040*** 
(0.010) 

0.151*** 
(0.024) 

0.149*** 
(0.023) 

0.065*** 
(0.014) 

0.064*** 
(0.014) 

 ***0.901 ߚ
(0.348) 

0.907*** 
(0.016) 

0.903*** 
(0.017) 

0.904*** 
(0.016) 

0.981*** 
(0.006) 

0.980*** 
(0.006) 

0.913*** 
(0.298) 

0.921*** 
(0.349) 

 ***0.066   ߛ
(0.017) 

0.066*** 
(0.017) 

-0.048*** 
(0.011) 

-0.048*** 
(0.011) 

0.214*** 
(0.063) 

0.222*** 
(0.064) 

 ***2.248       ߜ
(0.362) 

2.243*** 
(0.354) 

m 0.445*** 
(0.018) 

0.443*** 
(0.018) 

0.448*** 
(0.019) 

0.350** 
(0.150) 

0.397** 
(0.187) 

0.440** 
(0.198) 

0.429** 
(0.191) 

0.413*** 
(0.140) 

 0.150 ߠ
(0.190) 

0.149 
(0.116) 

0.142 
(0.172) 

0.130 
(0.115) 

0.386 
(0.391) 

0.360 
(0.335) 

0.346 
(0.338) 

0.367 
(0.269) 

 *18.800 ݓ
(10.256) 

18.607* 
(9.969) 

18.860** 
(9.024) 

16.552** 
(7.231) 

14.080** 
(5.919) 

16.619* 
(8.668) 

18.295*** 
(5.967) 

15.106** 
(7.624) 

 ***10.055 ߟ
(1.487) 

10.339*** 
(1.575) 

10.360*** 
(1.589) 

10.479*** 
(1.619) 

9.632*** 
(1.343) 

9.813*** 
(1.394) 

10.426*** 
(1.616) 

10.534*** 
(1.642) 

 ***0.112-  ߣ
(0.038)  -0.095*** 

(0.036)  -0.091*** 
(0.035)  -0.088*** 

(0.032) 
LLF -8443.35 -8424.37 -8420.21 -8411.97 -8419.93 -8411.70 -8434.75 -8426.80 
AIC 16910.71 16882.75 16874.41 16859.93 16875.86 16858.40 16903.50 16889.60 
BIC 16987.10 16990.96 16982.63 16974.51 16990.43 16981.34 17011.71 17004.17 
Notes: This table shows the estimated results of the short- and long-run volatility of green energy stock returns where 
the exogenous variable for long-run volatility is CCN. For robustness, we consider various models of GARCH-
MIDAS, GJRGARCH-MIDAS, EGARCH-MIDAS, and APARCH-MIDAS with conditional distribution of 
standard-t (Std-t) and skewed t (Skew-t). LLF, AIC and BIC are diagnostic statistics that indicate log-likelihood 
function value, Akaike information criterion and Bayesian information criterion. Standard errors are presented in 
parentheses. *p <.1; **p <.05; ***p <.01. 

The coefficient of interest, ߠ, measures how the climate risk factor (CCN) affects 
the long-run component of the energy stock indices' conditional volatility. The 
estimated results in Table 2 show that ߠ  is significantly positive at various 
specifications, which implies that higher levels of climate change lead to a rise in long-
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run brown energy stock volatility. However, Table 3 shows that the estimated ߠ is 
insignificant at various specifications, implying that the climate risk factor of CCN does 
not significantly affect the long-run volatility of green stock index returns. 

Table 4 presents the estimated results for the effect of the other two climate risk 
factors, NCCN and CPU, on the conditional volatilities of brown stock index returns. 
To save space, we omit the estimated coefficient results for the variance equations as 
indicated by Eqs. (4)-(6) 7 . That is, we only report the estimated results for the 
coefficients in the MIDAS regression on the long-run volatilities as in Eq. (8), which 
demonstrate how the climate risk factors NCCN and CPU affect the long-run volatilities 
of brown stock index returns. We also report the diagnostic statistics, LLF, AIC, and 
BIC, in Table 4. For the green stock index, Table 5 shows the estimated results in a 
similar way to Table 4.  

The results in Table 4 show significantly negative skewness of the conditional 
distribution (in accordance with Table 2) and the fitness of the models with the 
skewness parameter is better, as suggested by the diagnostic statistics. All the 
diagnostic statistics suggest that EGARCH-MIDAS with skew-t distribution has the 
best fitting performance. The important result is that both of the two climate risk factors 
(NCCN and CPU) significantly increase the long-run volatility of the brown energy 
index. As far the economic size of the effect on brown energy stock is concerned, 
NCCN has larger effect than CCN and CPU, compared to the results in Table 2. 

Table 4 Effect of NCCN and CPU on the long-run volatilities of the brown energy 
stock index 

Coeff. GARCH-MIDAS GJRGARCH-MIDAS EGARCH-MIDAS APARCH-MIDAS 
Std-t Skew-t Std-t Skew-t Std-t Skew-t Std-t Skew-t 

Panel A: MIDAS with NCCN 

m 0.113** 
(0.044) 

0.170*** 
(0.061) 

0.186** 
(0.078) 

0.299*** 
(0.114) 

0.429*** 
(0.142) 

0.432*** 
(0.147) 

0.576*** 
(0.215) 

0.507*** 
(0.165) 

 **0.475 ߠ
(0.199) 

0.409*** 
(0.137) 

0.389*** 
(0.145) 

0.319** 
(0.141) 

0.483** 
(0.204) 

0.478*** 
(0.165) 

0.411*** 
(0.153) 

0.442*** 
(0.150) 

 ***7.068 ݓ
(2.583) 

8.895*** 
(3.143) 

7.612** 
(3.396) 

8.630** 
(3.709) 

8.833*** 
(2.964) 

9.131*** 
(3.212) 

8.842* 
(4.751) 

9.870* 
(5.413) 

                             

7 The detailed results are available on request. 
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 ***10.511 ߟ
(3.906) 

10.419*** 
(3.723) 

9.173*** 
(2.695) 

9.268*** 
(2.877) 

10.527*** 
(3.449) 

9.975*** 
(3.800) 

10.440*** 
(3.844) 

9.821*** 
(3.508) 

 ***0.103-  ߣ
(0.019)  -0.102** 

(0.050)  -0.091** 
(0.039)  -0.087*** 

(0.018) 
LLF -7329.95 -7326.66 -7327.65 -7325.68 -7304.47 -7296.11 -7305.93 -7290.81 
AIC 14740.70 14733.72 14727.83 14702.07 14713.89 14682.07 14718.59 14643.48 
BIC 14821.11 14810.79 14818.30 14796.34 14776.98 14751.71 14767.25 14755.15 

Panel B: MIDAS with CPU 

m 

0.519*** 
(0.138) 

0.364*** 
(0.118) 

0.343*** 
(0.124) 

0.535*** 
(0.202) 

0.498*** 
(0.167) 

0.386*** 
(0.144) 

0.648*** 
(0.243) 

0.340*** 
(0.114) 

 ***0.179 ߠ
(0.050) 

0.202*** 
(0.067) 

0.289*** 
(0.110) 

0.156*** 
(0.054) 

0.248*** 
(0.089) 

0.267*** 
(0.099) 

0.247*** 
(0.084) 

0.163*** 
(0.063) 

 ݓ

9.613*** 
(3.705) 

10.130** 
(4.867) 

10.646** 
(4.286) 

8.879** 
(4.104) 

8.869** 
(3.689) 

9.509*** 
(3.579) 

10.018*** 
(3.780) 

8.915*** 
(3.278) 

 ***8.011 ߟ
(2.593) 

8.293*** 
(3.142) 

10.301*** 
(3.862) 

9.226*** 
(3.581) 

8.127*** 
(3.152) 

7.865*** 
(2.997) 

9.615*** 
(3.693) 

7.519*** 
(2.689) 

 ***0.122-  ߣ
(0.002)  -0.119** 

(0.054)  -0.115*** 
(0.013)  -0.089*** 

(0.027) 
LLF -7321.71 -7308.68 -7315.34 -7308.31 -7297.22 -7288.17 -7293.03 -7282.83 
AIC 14724.03 14714.51 14682.47 14695.70 14664.51 14678.03 14667.98 14651.12 
BIC 14840.84 14831.82 14846.71 14828.56 14840.32 14795.71 14822.03 14793.69 

Notes:  This table shows the estimated results of the long-run volatility of brown energy stock returns where the 
exogenous variable for long-run volatility is NCCN in Panel A and CPU in Panel B. We omit the estimated results 
of the short-run components to save space. For robustness, we consider various models of GARCH-MIDAS, 
GJRGARCH-MIDAS, EGARCH-MIDAS, and APARCH-MIDAS with conditional distribution of standard-t (Std-
t) and skewed t (Skew-t). LLF, AIC and BIC are diagnostic statistics that indicate log-likelihood function value, 
Akaike information criterion and Bayesian information criterion. Standard errors are presented in parentheses. *p 
<.1; **p <.05; ***p <.01.  

Table 5 presents the estimated coefficient, ߠ, for both NCCN and CPU, which 
does not significantly affect the long-run volatility of the green stock index. This 
implies that climate risk matters for the volatility of the polluting energy sector but not 
the clean energy sector. Specifically, under the energy transition, investors switch from 
the polluting brown energy sector, leading to an increase in its volatility, to green 
energy stocks, which seem not to experience any significant change in volatility, 
reflecting the rough movement of stock investments from brown energy and the smooth 
stock movement to green energy.  
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Table 5 Effect of NCCN and CPU on the long-run volatilities of the green energy 
stock index 

Coeff. GARCH-MIDAS GJRGARCH-MIDAS EGARCH-MIDAS APARCH-MIDAS 
Std-t Skew-t Std-t Skew-t Std-t Skew-t Std-t Skew-t 

Panel A: MIDAS with NCCN 

m 0.498*** 
(0.177) 

0.601*** 
(0.219) 

0.525*** 
(0.181) 

0.568*** 
(0.185) 

0.384*** 
(0.129) 

0.521*** 
(0.184) 

0.371*** 
(0.127) 

0.644*** 
(0.233) 

 0.332 ߠ
(0.203) 

0.201 
(0.144) 

0.217 
(0.167) 

0.251 
(0.294) 

0.348 
(0.273) 

0.313 
(0.203) 

0.331 
(0.204) 

0.250 
(0.181) 

 *16.784 ݓ
(8.699) 

15.759** 
(7.650) 

13.797*** 
(4.498) 

10.573* 
(5.880) 

14.102** 
(6.118) 

15.208*** 
(5.514) 

17.247*** 
(6.593) 

16.169*** 
(5.703) 

 **5.105 ߟ
(2.265) 

5.701** 
(2.299) 

6.839** 
(3.294) 

8.950** 
(3.982) 

7.350** 
(3.482) 

8.017** 
(3.758) 

10.911*** 
(3.780) 

10.796** 
(4.736) 

 ***0.124-  ߣ
(0.016)  -0.122*** 

(0.041)  -0.094*** 
(0.014)  -0.086*** 

(0.002) 
LLF -8446.68 -8436.95 -8442.20 -8433.80 -8448.15 -8436.95 -8432.00 -8430.52 
AIC 17007.87 17005.88 17004.97 16995.93 16991.26 16984.67 16989.50 16972.21 
BIC 17006.23 17002.18 17004.91 16990.57 16997.61 16988.76 16996.30 16986.48 

Panel B: MIDAS with CPU 

m 

0.520*** 
(0.163) 

0.614*** 
(0.226) 

0.271*** 
(0.099) 

0.545*** 
(0.189) 

0.525*** 
(0.164) 

0.398*** 
(0.150) 

0.322*** 
(0.108) 

0.405*** 
(0.156) 

 0.165 ߠ
(0.156) 

0.214 
(0.168) 

0.303 
(0.333) 

0.221 
(0.163) 

0.194 
(0.199) 

0.276 
(0.266) 

0.203 
(0.230) 

0.301 
(0.337) 

 ݓ

14.117*** 
(5.218) 

17.144*** 
(6.054) 

13.381*** 
(4.756) 

16.928*** 
(5.426) 

14.582** 
(7.253) 

16.371* 
(8.447) 

15.384** 
(7.713) 

16.193* 
(8.322) 

 ***7.285 ߟ
(2.725) 

8.311*** 
(2.732) 

9.640*** 
(2.973) 

10.040*** 
(3.002) 

10.293*** 
(3.843) 

10.277*** 
(3.838) 

10.375*** 
(3.915) 

10.536*** 
(3.780) 

 ***0.132-  ߣ
(0.040)  -0.110*** 

(0.039)  -0.084* 
(0.044)  -0.081** 

(0.038) 
LLF -8453.12 -8442.76 -8440.55 -8428.24 -8421.01 -8416.55 -8420.27 -8411.46 
AIC 17011.99 17008.23 17003.34 16994.01 16995.76 16989.64 16996.69 16987.67 
BIC 17008.18 17005.68 17008.43 16993.62 16991.65 16989.36 16990.45 16980.09 
Notes:  This table shows the estimated results of the long-run volatility of green energy stock returns where the 
exogenous variable for long-run volatility is NCCN in Panel A and CPU in Panel B. We omit the estimated results 
of the short-run components to save space. For robustness, we consider various models of GARCH-MIDAS, 
GJRGARCH-MIDAS, EGARCH-MIDAS, and APARCH-MIDAS with conditional distribution of standard-t (Std-
t) and skewed t (Skew-t). LLF, AIC and BIC are diagnostic statistics that indicate log-likelihood function value, 
Akaike information criterion and Bayesian information criterion. Standard errors are presented in parentheses. *p 
<.1; **p <.05; ***p <.01. 
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4.2 The effect of climate risk on the long-run correlation between the brown 

and green energy stock indices 
In this section, we analyse how the climate risk factor affects the long-run 

correlation between green and brown stock index returns. As Eq. (11) and Eq. (14) 
indicate, we introduce the symmetric and asymmetric innovation shock into the short-
run correlation, denoted as DCC-MIDAS and ADCC-MIDAS. For the variance 
equation, before estimating the dynamic correlation, we adopt the suggestion from 
Tables 2 to 5 that the EGARCH-MIDAS with skew-t distribution has the best fitting 
performance. Therefore, we omit the other specifications for volatilities from the 
estimation of dynamic correlation. Similarly, we consider only the conditional 
distribution of the dynamic correlation bskew-t because of the significant and negative 
skewness in both the brown and green energy stock index returns. We include one lag 
year of climate risk factor into the MIDAS regression for the long-run correlation, i.e., 
L = 12 in Eq. (13), as for the long-run volatilities. 

As Table 6 shows that the estimated coefficients a and b for DCC-MIDAS and 
ADCC-MIDAS have a sum near to one. This implies that the quasi-correlations are 
mean-reverted. The significant and positive estimation of g for ADCC-MIDAS 
suggests that the dynamic correlation increases much more with both negative 
innovations in brown and green stock index returns. The diagnostic statistics of AIC, 
BIC and LLF show that the models with asymmetric effects of returns innovation on 
the conditional correlation have the better fitting performance. The important result in 
Table 6 is that the estimated coefficients of ߠ  are all significantly negative. This 
implies that the long-run conditional correlation between the brown and green stock 
index returns decreases with an increase in climate risk, irrespective whether the risk 
proxy is CCN, NCCN or CPU. Another interesting result is that the economic size of 
the effect is much larger when we use NCCN as the proxy of climate risk, suggesting 
that the correlation between the returns of brown and green energy stock indices are 
more sensitive to negative climate change news and sentiment (Engle et al., 2020). This 
result is not surprising given previous evidence for the tendency of investors to move 
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away from brown energy to green and clean energy investments under high 
temperatures (Choi et al., 2020) and intensified climate risk (Pástor et al., 2021; Bouri 
et al., 2022), as captured by negative climate change news.  
Table 6 Estimated results of (A)DCC-MIDAS for the brown and green energy stock 

indices with the effect of climate risk factors 

Coef. DCC-EGARCH-MIDAS ADCC-EGARCH-MIDAS 
CCN NCCN CPU CCN NCCN CPU 

a 0.107*** 
(0.015) 

0.151** 
(0.075) 

0.104* 
(0.054) 

0.085** 
(0.043) 

0.098*** 
(0.027) 

0.051*** 
(0.019) 

b 0.892*** 
(0.313) 

0.875** 
(0.425) 

0.859* 
(0.453) 

0.895*** 
(0.328) 

0.890* 
(0.458) 

0.916** 
(0.430) 

g    0.068* 
(0.035) 

0.020** 
(0.009) 

0.031* 
(0.016) 

m 1.569** 
(0.624) 

0.746* 
(0.381) 

1.317** 
(0.542) 

0.814** 
(0.393) 

1.751* 
(0.989) 

0.817** 
(0.340) 

 *0.069- ߠ
(0.040) 

-0.289*** 
(0.106) 

-0.063* 
(0.034) 

-0.070** 
(0.035) 

-0.269* 
(0.157) 

-0.078* 
(0.045) 

௖ݓ  7.855*** 
(2.780) 

3.495** 
(1.527) 

2.221* 
(1.145) 

3.257** 
(1.528) 

6.655** 
(2.929) 

5.153* 
(2.690) 

λଵ -0.102*** 
(0.038) 

-0.165** 
(0.069) 

-0.138** 
(0.058) 

-0.078** 
(0.034) 

-0.127*** 
(0.042) 

-0.216** 
(0.101) 

λଶ -0.073*** 
(0.027) 

-0.211*** 
(0.074) 

-0.162** 
(0.081) 

-0.167*** 
(0.060) 

-0.220** 
(0.092) 

-0.208*** 
(0.067) 

ν 9.175*** 
(3.293) 

10.896** 
(5.256) 

9.550*** 
(3.647) 

9.907** 
(4.147) 

10.284*** 
(3.651) 

10.811*** 
(2.951) 

AIC 11827.67 11775.95 11819.92 11750.27 11750.27 11780.73 
BIC 11849.90 12230.00 15172.05 11818.49 12139.64 15081.19 
LLF -5899.30 -6094.24 -7574.07 -5882.88 -5966.75 -7519.29 

Notes: This table shows the estimated results of the short- and long-run correlations of the brown and green energy 
stock returns, where the exogenous variable for the long-run component is CCN, NCCN and CPU. We consider 
only (A)DCC-EGARCH-MIDAS with conditional distribution of skewed t (Skew-t) according to the diagnostic 
results in Tables 2-5. LLF, AIC and BIC are diagnostic statistics that indicate log-likelihood function value, Akaike 
information criterion and Bayesian information criterion. Standard errors are presented in parentheses. *p <.1; **p 
<.05; ***p <.01. 
 

5 Hedging performance with the effect of the climate risk factor 
The significant negative effect of the climate risk factor on the dynamic correlation 

between the returns of brown and green energy stock indices suggests that including 
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the climate risk factor may be helpful to improve the hedging performance of the two 
indices. Therefore, we test this implication by considering the hedge ratio and hedging 
effectiveness.  

Firstly, we follow Kroner and Sultan (1993) and compute the optimal hedge ratio 
between the brown and green stock indices at day t: 

β௧ = ρ௧ ⋅ σ௧௕
σ௧௚

 

where σ௧௕ and σ௧௚ are the conditional volatility of the brown and green stock index 
returns on day t, and ߩ௧ is their time varying correlation, which are all extracted from 
EGARCH-ADCC-MIDAS with bskew-t distribution. We do one-day-ahead prediction 
for σ௧௕, σ௧௚ and ߩ௧ using a rolling window scheme. As a robustness check, we choose 
window sizes of 10, 30 and 60 days. That is, we leave 2/3 of the sample (in-sample) to 
fit the model and do one-day-ahead prediction. Then, we fix the length of the in-sample 
but fit the model again, after the window size of the prediction has been done. We repeat 
such a procedure until the remaining 1/3 sample (out-of-sample) is used. With the help 
of the predicted σ௧௕, σ௧௚ and ߩ௧, we can easily compute the optimal hedge ratio (β௧) 
and thus the hedged portfolio returns as: 

ܴு,௧ = ܴ௕,௧ − β௧ܴ௚,௧ 
where ܴ௕,௧ and ܴ௚,௧ are the out-of-sample daily returns of the brown and green stock 
indices.  

Secondly, we measure the hedging effectiveness as: 
ܧܪ = 1 − ܸு

ܸ௎  
where ܸு is the variance of hedged portfolio returns (ܴு,௧), and ܸ௎ is the variance 
of unhedged portfolio returns (ܴ௕,௧ ). ܧܪ  measures how much the variance of the 
brown index returns is hedged out by the green stock index returns with the long-short 
ratio ߚ௧. The higher the ܧܪ, the better the hedging effectiveness. 

To highlight the gain of adding the climate risk factor, we estimate ߚ௧  by 
EGARCH-ADCC-MIDAS with and without the climate risk factors. We denote the 
hedging ratio without the climate risk factor as ߚ௧-None, and the hedging ratio with the 
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climate risk factors as ߚ௧ -CCN, ߚ௧ -NCCN and ߚ௧ -CPU. Similarly, we denote the 
hedging effectiveness based on the model without the climate risk factor as HE-None 
and the models with the climate risk factors of CCN, NCCN, and CPU as HE-CCN, 
HE-NCCN, and HE-CPU, respectively. 

Table 7 Summary statistics of hedge ratios and hedging effectiveness (HE) 
 Refitting window = 10 Refitting window = 30 Refitting window = 60 

Mean Min Max Mean Min Max Mean Min Max 
Panel A: Hedge ratio 
 ௧-None 0.411 -0.292 1.648 0.487 -0.214 1.691 0.431 -0.178 1.714ߚ
 ௧-CCN 0.299 -0.414 1.206 0.257 -0.396 1.302 0.291 -0.379 1.371ߚ
 ௧-NCCN 0.167 -0.528 0.965 0.159 -0.501 1.024 0.189 -0.517 1.079ߚ
 ௧-CPU 0.232 -0.487 1.324 0.295 -0.422 1.330 0.276 -0.411 1.285ߚ
Panel B: Hedging effectiveness 
HE-None 0.036 0.056 0.042 
HE-CCN 0.117 0.128 0.113 
HE-NCCN 0.138 0.155 0.147 
HE-CPU 0.121 0.127 0.115 

Notes: This table presents the summary statistics of the dynamic optimal hedge ratio for the green and brown stock 
indices in Panel A and the hedging effectiveness in Panel B. For robustness, we consider refitting window sizes of 
10, 30, and 60 days after one-day-ahead prediction. For the exogenous variable in MIDAS, we compare the results 
from four specification of no climate risk factor (None), CCN, NCCN, and CPU. 

Table 7 presents the summary statistics of the optimal hedge ratios and hedging 
effectiveness (HE). The hedge ratio, ߚ௧, with the climate risk factor has a lower mean 
than ߚ௧-None, which does not include any climate risk factors, for all sizes of refitting 
window. This implies that the hedge ratio accounting for a climate risk factor is cheaper. 
The HE for ߚ௧-None is smaller than all the ߚ௧ with the climate risk factors. These 
results are robust to out-of-sample analysis and under various refitting window sizes. 
They imply that the dynamic optimal hedge ratio with climate risk leads to better 
hedging effectiveness. Furthermore, ߚ௧ -NCCN has a lower mean than the other 
statistics for all sizes of refitting window, and its hedging effectiveness (HE-NCCN) is 
highest. This suggests that the model including NCCN is better at capturing the negative 
correlation between the brown and green stock indices and thus reflects more 
opportunities for hedging. Overall, these results show that the correlation between 
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brown and green energy returns is more affected by negative climate news and 
sentiment, captured by the NCCN index, than CPU or regular climate news. This result 
reflects the importance of considering comprehensive climate risk measures including 
the physical aspects of (negative) climate news and climate disaster events, not just 
transitional measures such climate policy uncertainty. This is intuitive and further 
confirms our choice to move beyond the CPU index used by Bouri et al. (2022), Dutta 
et al. (2022), and Liang et al. (2022), to consider negative climate change news.  

6 Conclusions 
Significant risks associated with climate change and related policies have prompted 
concentrated research into potential solutions and action plans for the economic 
transformation toward net-zero emissions in alignment with the Climate Change 
Conferences. In this paper, we extend the academic literature on modelling the volatility 
and correlation of green and brown energy stock indices by relating them to various 
news-based climate risk measures reflecting not only climate policy uncertainty as in 
previous studies (e.g. Bouri et al., 2022; Sarker et al., 2022; Liang et al., 2022; Dutta et 
al., 2023) but both a climate change news index and a negative climate change news 
index. 

Using mixed data sampling models combining daily returns on green and brown 
energy stock indices with monthly data on climate risks, we extend, for the first time, 
the symmetric DCC-MIDAS model to an asymmetric DCC-MIDAS model with 
bivariate skew-t, to include negative skewness in innovation. The main results are as 
follows. Firstly, CPU, the climate change index, and the news index contain information 
useful for improving the prediction of the volatility of the brown energy stock index 
returns, whereas the impact on the volatility of the green energy stock index returns is 
insignificant. Secondly, the three climate risk measures reduce the green-brown returns 
correlation, with the negative climate change news index having the most impact. 
Thirdly, the practical implications are highlighted by the results of the hedging analysis, 
which indicates that the hedging performance between the brown and green energy 
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stock indices is significantly improved by inserting the negative climate change news 
index into the long-run component of dynamic correlation. 

These findings concern both investors and policymakers. Investors can build on 
our analysis by considering the impact of climate risk on the volatility of the brown 
energy stock index, notably that of negative climate change news, within a volatility 
prediction model, and its implications for portfolio allocation and risk management. 
Furthermore, the hedging benefits arising from accounting for climate risk are 
highlighted, which is useful for portfolio decarbonization under the energy transition 
towards net-zero emissions. The findings are useful for policymakers, especially given 
their continuous efforts to green the economy and financial system and set green 
financial principles and disclosure requirements for funds and investment banks on 
climate-related risk assessments.  

Although our current paper captures the impact of exogenous climate risk shocks 
on the long-term fluctuation and dynamic correlation of the stock index returns of 
brown and green energy firms, and the hedging strategy between brown and green 
energy stocks, accounting for the impact of climate risk, it does not regard this portfolio 
as a part of a hedging framework to deal with climate change risk and thus does not 
provide policies for reducing climate-related risk. Nevertheless, this paper takes this 
topic as a starting point in a research field which offers many valuable research 
directions for the future.  
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