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Abstract

In this paper, we examine the spillover across the monthly inflation rates (measured by
the CPI) covering the USA, Canada, UK, Germany, France, Netherlands, Belgium, Italy,
Spain, Portugal, and Greece. Using data covering the period from May 1963 to November
2022 within a time-varying spillover approach, we show that the total spillover index across
the inflation rates spiked during the war in Ukraine period, exceeding its previous peak
shown during the 1970s energy crisis. Notably, we apply a quantile-on-quantile regression
and reveal that the total spillover index is positively associated with the level of global
geopolitical risk (GPR) index. Levels of GPR are positively influencing high levels of the
inflation spillover index, whereas the GPR Acts index is positively associated with all lev-
els of inflation spillover index. Given that rising levels of inflation are posing risks to the
financial system and economic growth, these findings should matter to the central banks
and policymakers in advanced economies. They suggest that the policy response should go
beyond conventional monetary tools by considering the political actions necessary to solve
the Russia-Ukraine war and ease the global geopolitical tensions.

Keywords: Inflation spillovers; geopolitical risk; TVP-VAR; dynamic connectedness.
JEL codes: C32; C5; G15.



1 Introduction

After almost two decades of low and stable inflation, inflationary pressures have started

to build up after Q12020 following the COVID-19-induced lockdowns which have led to a

shortage of goods and labor in the supply chain. The recent spike in various commodity

prices in the wake of the Russia-Ukraine war has aggravated the situation and raised long-

term inflation expectations. In fact, the war has disrupted the supply of energy, fertilizers,

and grains, and the sanctions on Russia adversely affected trade and production, which

further heightens prices. Recent figures show that global inflation has increased from

around 2% to more than 6%, reaching high levels not experienced in 40 years well above

the inflation targets of monetary authorities in major economies. The situation is often

compared to the inflation shock of 1970s, suggesting a possible material risk. As a remedy

to high inflation, the Federal Reserve and other central banks in Canada and Europe

responded by sharply tightening monetary policy from early 2022, although they have

a good history of reacting to economic and political uncertainty by reducing interest

rates. Therefore, central banks face a long-term quest of ensuring both price stability and

financial system stability, which has been historically very challenging. On the financial

markets scene, given that current levels of inflation are high and driven by output shocks

that reduce economic capacity, asset returns will not easily absorb inflation and will likely

respond negatively.1

Under such a challenging environment, it is relevant to participate in the current

debate on the supply-led inflation and the role of geopolitical risk. Notably, a major

concern of monetary policy is to understand the spillover effect of inflation across major

economies, which might have implications on domestic consumer prices and monetary

policy design. For example, if linkages among global inflation rates are the result of

common (geopolitical) shocks, then central banks have to jointly (and not) independently

fight inflation (Jordan, 2016). However, recent studies on the linkage of inflation rates

across economies are limited in their sample period, scope, and the factors driving it.

Pham and Sala (2022) focus G7 plus Spain using monthly data from 1991 to 2019 and
1This is the opposite of the case of low levels of inflation and expected inflation, which is not necessarily

harmful to asset prices. However, there have been a few exceptions where stock prices and inflation were
positively correlated, see Antonakakis et al. (2017).
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the Diebold/Yılmaz approach. They provide evidence that the level of connectedness in

inflation is stronger than the level of connectedness in unemployment although both vary

across time and increase during crisis periods such as the 2008 Global Financial Crisis.

Using Euro-area monthly data from January 1955 to April 2017, Tiwari et al. (2019) apply

time and frequency measures of spillovers and show that Germany is a major inflation

transmitter unlike Spain which acts as an inflation receiver. Furthermore, they indicate

that the inflation rates are significantly correlated in the long-term and increase with

the time-scales. In a recent study, Aharon and Qadan (2022) consider G7 economies

with a time-varying spillover approach. They report an increase in the connectedness

across the inflation rates of G7 countries during the pandemic and Russia-Ukraine war.

However, their data sample period is not comprehensive, notably because (i) its sample

period is limited to January 1990-May 2022 and (ii) the sample covers only U.K., France,

Germany, Italy, only, despite the fact that the war shock particularly concerns most of

European countries. In this regard, European countries are harshly influenced by trade

disruptions, especially because they rely on energy imports from Russia, which include

natural gas, (35%), crude oil, (20%), and coal (40%).2 Furthermore, the scope of the

analysis of Aharon and Qadan (2022) is limited to the spillover effect across inflation

rates and does not pay attention to the role of geopolitical risk as a potential driver of

inflation spillovers. Such issues are very important, as highlighted by the recent study of

Caldara et al. (2023), which uses a structural VAR model on monthly data from the 1970s

and shows that global geopolitical risks upsurge the level of inflation in many countries.

Based on the above, the academic literature remains unclear how inflation is spilled

over across North American and European economies over time covering the periods of

great inflation of 1970s, the COVID-19 outbreak, and the Russia-Ukraine war. Further-

more, it is silent about the role GPR in driving the spillover effect across the inflation

rates of these economies and whether this role is more or less strong under high levels of

geopolitical risk.

In this paper, we examine the spillover effect across the monthly inflation rates of the

USA, Canada, UK, Germany, France, Netherlands, Belgium, Italy, Spain, Portugal, and

Greece and relates it to global geopolitical risk. To this end, we first use a time-varying
2https://blogs.worldbank.org/developmenttalk/commodity-prices-surge-due-war-ukraine.
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spillover framework on monthly inflation rates data for the period May 1963 to November

2022, and then conduct a quantile-on-quantile regression to understand the impact of

various (low, moderate, and high) levels of geopolitical risk on the various states (low,

moderate, and high) of inflation spillovers.

The results show that the total spillover index across the inflation rates spiked during

the war in Ukraine period, exceeding its previous peak shown during the 1970s energy cri-

sis. Notably, we apply a quantile-on-quantile regression and reveal that the total spillover

index is positively associated with the level of global geopolitical risk, whereas only high

levels of GPR Acts index are positively associated with all levels of inflation spillover in-

dex. Our paper contributes to the related literature on three fronts. Firstly, it examines

the spillover effect across inflation rates from a large sample comprising various economies

from North America and Europe, unlike most previous studies that are generally centered

on the US or G7 economies (Saâdaoui et al. (2022); Caldara et al. (2023); Shahzad et al.

(2023)). Secondly, it provides insights on the level of inflation transmission over a long

sample period from before 1970s, covering output shocks such as the COVID-19 and

Russia-Ukraine war, which enriches the current literature (for example, Pham and Sala

(2022)). In line with previous results, we show that the spillover of inflation intensifies

during crisis periods (Aharon and Qadan, 2022). Thirdly, it considers the role of geopo-

litical risk in driving inflation spillovers, showing that heightened geopolitical risk can

drive higher the inflation spillover effect. Geopolitical risk is a contributor to inflation

spillovers among advanced economies, suggesting that inflation is not a domestic problem

but rather a global phenomenon shared by major economies; importantly, the dynamic of

inflation spillovers is driven by geopolitical risk. Previous studies indicate that geopolitical

stability has been the backbone of the decades-long efficient resource allocation and disin-

flation. Accordingly, our results point to a synchronization of inflation rates across North

American and European economies under the geopolitical led inflation, which provides

useful insights on the behavior of inflation and the policies suitable to curb inflation.

The remainder of this study is structured as follows: Section 2 describes the underlying

data. Section 3 outlines the employed methodology. Section 4 presents the empirical

results while Section 5 discusses their implications. Finally, Section 6 concludes the study.
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2 Data

In this study, we examine the monthly inflation transmission mechanism between the

United States of America (USA), Canada (CAN), Great Britain (GBR), Germany (DEU),

Belgium (BEL), the Netherlands (NLD), France (FRA), Italy (ITA), Spain (ESP), Por-

tugal (PRT), and Greece (GRC) over the period from May 1963 to November 2022. In

more detail, we use non-seasonally adjusted consumer price indices that are obtained from

the Federal Reserve Economic Database3 and compute the year-over-year (YoY) inflation

rates by zit = xit−xit−12
xit−12

, where zit is the year-over-year inflation rate and xit and is the

non-seasonally adjusted consumer price index of country i. The YoY inflation rates are

illustrated in Figure 1.

[INSERT FIGURE 1 AROUND HERE.]

Table 1 shows the summary statistics of the inflation rates. We see the largest average

inflation rates occurred in PRT, followed by GRC, ESP, ITA, and IRE while the lowest

average inflation rates are associated with DEU, NLD, BEL, CAN, and USA. Also, when

it comes to the variability of inflation rates, we see that GRC, ITA, PRT and ESP are

again on the upper end while DEU, BEL, NLD, USA, and CAN are on the lower end.

Notably, we find that all inflation rates are significantly right-skewed and leptokurtic

distributed. Thus, we also find that all series are not normally distributed according to

the Jarque and Bera (1980) normality test. Additionally, the summary statistics also point

out that all inflation rates are autocorrelated and exhibit ARCH/GARCH errors (Fisher

and Gallagher, 2012) at least at the 1% significance level as well as stationary at least at

the 7% significance level. Finally, we also see that all Kendall correlation coefficients are

significantly positive with the lowest correlation occurring between NLD and GRC (0.230)

while the largest correlation is present between ITA and ESP (0.760). Thus, modeling the

interdependencies using a TVP-VAR with a time-varying variance-covariance structure

appears to be an adequate choice.

[INSERT TABLE 1 AROUND HERE.]
3The exact tickers are "{CC}CPIALLMINMEI" where {CC} stands for the three-letter country codes

defined in ISO 3166-1.
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As far as the metric of GPR is concerned, we rely on the index developed by Caldara

and Iacoviello (2022).4 The GPR (historical) index reflects automated text-search results

of the electronic archives of 3 newspapers namely, the Chicago Tribune, the New York

Times, and the Washington Post. Caldara and Iacoviello (2022) calculate the index by

counting the number of articles related to adverse geopolitical events in each newspaper

for each month (as a share of the total number of news articles). The search is organized in

eight categories: War Threats, Peace Threats, Military Buildups, Nuclear Threats, Terror

Threats, Beginning of War, Escalation of War, and Terror Acts. We further consider a

subvariant of the GPR index, namely the GPR Acts index, which only reflects phrases

related to the realization or escalation of adverse events such as starting or escalation of

a war and terrorist acts.

3 Methodology

3.1 TVP-VAR-based connectedness approach

In order to examine the inflation transmission mechanism, we employ the time-varying

parameter (TVP) vector autoregressive (VAR) model based extended joint connectedness

approach introduced by Balcilar et al. (2021). This framework combines the advantages

of the following proposed connectedness frameworks: Diebold and Yılmaz (2012, 2014),

Antonakakis et al. (2020), and Lastrapes and Wiesen (2021). In Diebold and Yılmaz

(2012, 2014) the original static and dynamic (rolling-window) VAR-based connectedness

framework has been introduced. Antonakakis et al. (2020) refined this framework by

introducing TVP-VAR-based connectedness measures which (i) track changes in the pa-

rameters faster and more accurately, (ii) are less outlier sensitive, (iii) do not lose observa-

tions, and (iv) can be employed when dealing with low-frequency datasets. Part of these

advantages is caused by the structure of the TVP-VAR model while other advantages

such as the more accurate capturing of parameter changes have been verified by using

different Monte Carlo simulations. Finally, Lastrapes and Wiesen (2021) has introduced

the concept of joint connectedness measures which use a more sophisticated and adequate

GFEVD normalization technique as the originally proposed row normalization technique
4The data is available for download from: https://www.matteoiacoviello.com/gpr.htm.
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(see, Diebold and Yılmaz, 2012). However, the initial proposition had the disadvantage

that it could not compute net pairwise directional connectedness measures. In the work

of Balcilar et al. (2021), the joint connectedness approach has been extended in order

to compute the net pairwise directional connectedness measures and pairwise connect-

edness indices (Gabauer, 2021; Chatziantoniou and Gabauer, 2021) in the fashion of the

TVP-VAR framework. As the TVP-VAR-based extended joint connectedness approach

depends on the TVP-VAR-based connectedness approach (Antonakakis et al., 2020), we

have to first describe the original approach and later on how the total connectedness index

(TCI) of the TVP-VAR-based connectedness approach is used to weight the connectedness

measure in the extended joint connectedness framework.

We start with outlining the TVP-VAR(1) model as suggested by the Bayesian infor-

mation criterion (BIC):

zt =Btzt−1 + ut ut ∼ N(0,St) (1)

vec(Bt) =vec(Bt−1) + vt vt ∼ N(0,Rt) (2)

where zt, zt−1 and ut are k × 1 dimensional vectors in t, t − 1, and the corresponding

error term, respectively. Bt and St are k × k dimensional matrices demonstrating the

TVP-VAR coefficients and the time-varying variance-covariance while vec(Bt) and vt are

k2 × 1 dimensional vectors and Rt is a k2 × k2 dimensional matrix.

In the next step, the TVP-VAR is transformed to its TVP-VMA representation using

the Wold representation theorem: zt = ∑p
i=1 Bitzt−i + ut = ∑∞

j=0 Ajtut−j.

Subsequently, the TVP-VMA coefficients are used to compute the generalized forecast

error variance decomposition (GFEVD) of Koop et al. (1996) and Pesaran and Shin (1998).

The H-step ahead GFEVD models the impact a shock in series j has on series i. This

can be formulated as follows,

ϕgen
ij,t (H) =

∑H−1
h=0 (e′iAhtStej)2

(e′jStej)
∑H−1

h=0 (e′iAhtStA′htei)
(3)

gSOTij,t =
ϕgen

ij,t (H)∑k
l=1 ϕgen

ik,l (H)
(4)

where ei is a k × 1 dimensional zero vector with unity on its ith position. As ϕgen
ij,t (H)
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stands for the unscaled GFEVD (∑k
j=1 ϕgen

ij,t (H) ̸= 1), Diebold and Yılmaz (2009, 2012,

2014) normalize ϕgen
ij,t (H) by dividing it by each row sum to obtain the scaled GFEVD,

gSOTij,t.

The scaled GFEVD is at the center of the connectedness approach allowing the com-

putation of the total directional connectedness TO (FROM) all other series. While the

TO total directional connectedness demonstrates the impact series i has on all others,

the FROM total directional connectedness illustrates the effect all series have on series i.

Those measures are computed as follows,

Sgen,to
i→•,t =

k∑
j=1,i ̸=j

gSOTji,t (5)

Sgen,from
i←•,t =

k∑
j=1,i ̸=j

gSOTij,t. (6)

By computing the difference between the TO and the FROM total directional connect-

edness we obtain the net total directional connectedness. This indicator reports whether

series i is a net transmitter or receiver of shocks. If Sgen,net
i,t > 0 (Sgen,net

i,t < 0), series i is

influencing (influenced by) all others more than being influenced by (influencing) them,

series i is considered a net transmitter (receiver) of shocks indicating that series i is driving

(driven by) the network:

Sgen,net
i,t = Sgen,to

i→•,t − Sgen,from
i←•,t (7)

Another relevant metric in the connectedness literature is the TCI which highlights

the degree of network interconnectedness and hence market risk. Mathematically, the

TCI is the average total directional connectedness to (from) others and thus equal to the

average amount of spillovers one series transmits (receives) from all others:

gSOIt = 1
K

k∑
i=1

Sgen,from
i←•,t = 1

K

k∑
i=1

Sgen,to
i→•,t , (8)

It should be noted that a high (low) TCI indicates high (low) market risk.

Finally, we focus on the net pairwise directional connectedness which demonstrates
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the bilateral transmission between series i and j,

Sgen,net
ij,t = gSOT gen,to

ji,t − gSOT gen,from
ij,t . (9)

If Sgen,net
ij,t > 0 (Sgen,net

ij,t < 0), series i dominates (is dominated) series j indicating that

series i influences (is influenced by) series j more than being influenced by (influencing)

it.

3.2 Extended joint connectedness approach

When turning to the extended joint connectedness approach, the main advantage over

the connectedness approach of Diebold and Yılmaz (2012, 2014) is that the normalization

method has been derived from econometric theory5. Sjnt,from
i←•,t illustrates the impact all

series have on series i. This can be formulated as follows,

ξt(H) =zt+H − E(zt+H |zt, zt−1, ...) =
H−1∑
h=0

Ah,tϵt+H−h (10)

E(ξt(H)ξ′t(H)) =Ah,tStA
′
h,t (11)

Sjnt,from
i←•,t =

E(ξ2
i,t(H)) − E[ξi,t(H) − E(ξi,t(H))|ϵ∀≠i,t+1, ..., ϵ∀≠i,t+H ]2

E(ξ2
it(H)) (12)

=
∑H−1

h=0 e′iAhtΣtMi(M ′
iΣtM

′
i)−1M ′

iΣtA
′
htei∑H−1

h=0 e′iAhtΣtA′htei

(13)

where Mi is a K × K − 1 rectangular matrix that equals the identity matrix with the ith

column eliminated, and ϵ∀ ̸= i, t + 1 denotes the K − 1-dimensional vector of shocks at

time t + 1 for all series except series i.

In the next step, the joint total connectedness index is computed by,

jSOIt = 1
K

k∑
i=1

Sjnt,from
i←•,t . (14)

This metric is within zero and unity as opposed to the TCI of the originally proposed

approach (see, Chatziantoniou and Gabauer, 2021; Gabauer, 2021).

An important extension of Balcilar et al. (2021) is that multiple scaling factors are
5For detailed mathematical derivations interested readers are referred to the technical appendix of

Lastrapes and Wiesen (2021).

8



used to relate gSOT to jSOT :

λit = Sjnt,from
i←•,t

Sgen,from
i←•,t

(15)

jSOTij,t =λitgSOTij,t (16)

Based upon this equality, the total directional connectedness from series i to all others,

the net total directional, and the net pairwise directional connectedness measures can be

calculated as follows,

Sjnt,to
i→•,t =

k∑
j=1,i ̸=j

jSOTji,t (17)

Sjnt,net
j,t =Sjnt,to

i→•,t − Sjnt,from
•→i,t (18)

Sjnt,net
ij,t =jSOT jnt,to

ji,t − jSOT jnt,from
ij,t . (19)

3.3 Quantile-on-quantile approach

After having obtained the time-varying total connectedness series from the TVP-VAR

model, we use the quantile-on-quantile (QQ) approach of Sim and Zhou (2015) to examine

the relationship between the inflation interconnectedness and the geopolitical risk index

of Caldara and Iacoviello (2022). The QQ model can be outlined as follows,

∆TCIt = βθ(∆GPRt−1) + uθ
t (20)

where ∆TCIt and ∆GPRt−1 are the quarter-on-quarter changes of the total connectedness

index and the geopolitical risk in period t−1, respectively. θ stands for the θ-th quantile of

the conditional distribution of the ∆TCI and uθ
t is a quantile error term whose conditional

θ-th quantile is equal to zero. The term βθ(·) is assumed to be of unknown functional

form, which is to be determined via the employed dataset.

Using a standard quantile regression model (see, Equation (20)) allows to measure the

impact ∆GPRt−1 to vary across the different quantiles on the inflation interconnectedness,

however, this model is unable to capture the dependence in its entirety as the term βθ(·) is

indexed on the TCI quantiles (θ) only and not the quantiles of the ∆GPRt−1. Therefore, in

order to get more comprehensive insights into the effect of ∆GPRt−1 on the connectedness

9



of inflation, we focus on the relationship between the θ-th quantile of the TCI and the

τ -th quantile of the ∆GPRt−1, denoted by P τ . This is done by examining Equation (20)

in the neighborhood of P τ via a local linear regression. As βθ(·) is unknown, this function

is approximated through a first-order Taylor expansion around a quantile P τ , such that

βθ(Pt) ≈ βθ(P τ ) + βθ′(P τ )(Pt − P τ ) (21)

where βθ′ is the partial derivative of βθ(Pt) with respect to P and is similar in its inter-

pretation to the coefficient (slope) of a linear regression model. Next, renaming βθ(P τ )

and βθ′(P τ ) as β0(θ, τ) and β1(θ, τ) respectively, we rewrite equation (21) as

βθ(Pt) ≈ β0(θ, τ) + β1(θ, τ)(Pt − P τ ) (22)

By substituting Equation (22) into Equation (20), we obtain

Tt = β0(θ, τ) + β1(θ, τ)(Pt − P τ )︸ ︷︷ ︸
(∗)

+uθ
t (23)

where the term (∗) is the θ-th conditional quantile of the TCI. Unlike the standard

conditional quantile function, Equation (23) captures the overall dependence structure

between the θ-th quantile of the ∆TCIt and the τ -th quantile of the ∆GPRt−1 as the

parameters β0 and β1. In the estimation of Equation (23), P̂t and P̂ τ , as well as, the

local linear regression estimates of the parameters β̂0 and β̂1 are obtained by solving the

following minimization problem,

min
b0,b1

=
n∑

i=1
ρθ

[
Tt − β̂ − β̂1(P̂t − P̂ τ )

]
K

(
Fn(P̂t − τ)

h

)
(24)

where ρ(u) is the quantile loss function, defined as ρ(u) = u(θ−I(u < 0)) and I is an indi-

cator function. K(·) demonstrates a kernel function while h is the bandwidth parameter

of the kernel. Caused by its computational simplicity and efficiency, the Gaussian kernel

is employed to weight the observations in the neighborhood of P τ . It should be noted

that these weights are inversely related to the distance between the empirical distribution

function of P̂t, denoted by Fn(P̂t) = 1
n

∑n
k=1 I(P̂k < P̂t), and the value of the distribution

function which corresponds with the quantile P τ , denoted by τ . Finally, the value of the
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bandwidth parameter h is chosen based on cross-validating the local linear regression.

4 Empirical results

4.1 Averaged connectedness measures

We begin this section by interpreting the averaged connectedness measures which are

outlined in Table 2. Diagonal values represent own-variance shares while off-diagonal

represent the impact variable j (column) has on variable i (row).

Table 2 highlights the interconnectedness among inflation rates. The averaged TCI

stress that on average 70.87% of a shock in one variable is transmitted to all others indicat-

ing that inflation rates are highly interconnected and that a shock in one country heavily

affects other countries. The main drivers of those spillover shocks are USA (120.51%),

FRA (36.05%), DEU (27.81%), and PRT (13.46%) while the main receivers of shocks are

NLD (-43.50%), ITA (-43.24%), CAN (-33.20%), GBR (-32.02%), BEL (-25.44%), GRC

(-12.29%), and ESP (-8.15%). Having a closer look at the pairwise dynamics reveals that

countries which are geographically closer to each other or with substantial trading ties are

more interconnected. For instance, CAN highest influence is on the USA. Additionally,

the influence of DEU and FRA on neighboring countries is higher than the impact of the

USA or CAN.

Interestingly, it appears that we either deal with stronger net shock transmitting or

receiving countries as the net pairwise transmission (NPT) which illustrates how many

countries country i dominates is either large or small. For instance, we find that USA

dominates 9 countries and DEU and PRT dominate 8 other countries. FRA and ESP

dominate 5 other countries. On the other hand, NLD and ITA are only driving two other

countries.

[INSERT TABLE 2 AROUND HERE.]

Figure 2 illustrates the averaged net pairwise directional connectedness while the mag-

nitude of the net pairwise transmission mechanism is reported in parentheses in Table 2.

It is shown that the inflation of ITA is driven by all other countries, expect ESP, as all

edges point at ITA and thus ITA is considered as a net receiver of shocks (yellow). The
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same is true for BEL which is driven by all other countries except GBR and NLD. On

the contrary, USA drives all other countries’ inflation rates except for the PRT inflation

rate which drives the US one - however, the magnitude of this propagation is small as

highlighted by the thin edge. DEU and FRA are further main transmitters of shocks

which are only driven by a few countries. Notably, GRC and PRT drive the inflation in

several European countries. These findings can be explained by the fact that DEU, FRA,

and the USA are among the world’s largest economies while GRC and ESP have been the

main driver of inflation and risk as the European government debt crisis has shown.

[INSERT FIGURE 2 AROUND HERE.]

4.2 Dynamic connectedness measures

Figure 3 unveils the dynamics of the TCI. We see that the dynamic total connectedness

increased during the 1970s illustrating the first and second oil price shocks (1973, 1979),

and decreased starting in 1980 during the oil glut period. The peaks in 2008 and 2010

can be associated with the Global Financial Crisis and European government debt crisis,

respectively. Finally, we see at the beginning of 2022 a substantial increase in the dynamic

total connectedness which is related to the Russia-Ukraine war.

[INSERT FIGURE 3 AROUND HERE.]

4.3 Quantile-on-quantile results

In Figure 4 the quantile-on-quantile relation between TCI and GPR index is illustrated.

The QQ relationship points out that high levels of the total spillover index are positively

associated with the level of geopolitical risk, especially when the latter is at moderate and

high levels, which is in line with the current global scenario, which witnessed high inflation

due to the high demand following quantitative easing measures during the COVID-19

outbreak, and this higher initial inflation state was propelled further because of higher

GPR emanating from the Russia-Ukraine war and higher oil prices. We further consider

the GPR Acts index, which only reflects phrases related to the realization or escalation

of adverse events such as starting or escalation of a war and terrorist acts, and the results
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presented in Figure 5 show that high levels of the GPR Acts index are positively associated

with all levels of the inflation spillover index. This results indicates the particularity of

the Acts dimension of global geopolitical risk in driving inflation spillovers, irrespective

of the size of the TCI.

[INSERT FIGURE 4 AROUND HERE.]

[INSERT FIGURE 5 AROUND HERE.]

5 Implications

Our results demonstrate that the levels of GPR positively influence inflation spillovers

in the Western world. As these countries are not only economically connected but also

politically allied, times of geopolitical tensions often imply that there is less free trading

and, therefore, increased problems in consumer supply. The current Russia-Ukraine war

is an excellent example. Due to sanctions, certain supply chains are disrupted and some

products that have been manufactured in Russia and/or its allied countries are no longer

available or are available at higher costs. The same applies for raw materials. Another

important aspect is that geopolitical tensions can lead to a decline of economic global-

ization as certain countries are no longer willing to source out key industries such as the

semi-conductor or defence branch. Recent findings of Boubaker et al. (2022) show that

countries with higher degrees of economic globalization are more vulnerable to geopoliti-

cal conflicts. To sum up, in times of high GPR, one would expect higher inflation rates in

all Western countries due to lower degree of economic globalization and supply shortages,

as well as high inflation spillovers across European and North American countries.

Another important question in this context is what the economic consequences of

higher inflation are. As this is not the core topic of this paper, there will be a brief dis-

cussion only. Basically, economy theory would expect a negative effect of higher inflation

on most companies’ stocks as higher inflation rates induce higher interest rates. Given

the logic of the discounted cash flow model, higher interest rates increase discounting of

future cash flows, resulting in a lower present value or stock price, respectively. How-

ever, this rule of thumb does not hold for all sectors. For example, the energy sector
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usually booms in times of GPR. Since the beginning of the Russia-Ukraine war, Western

oil companies have performed quite well as sanctions do not allow Western countries to

buy Russian energy commodities to the same conditions and extent as before the war.

Another notable example is the financial sector. On the one hand, rising interest rates

are good news for banks, especially in Europe, as they have suffered a lot from the low

interest environment in the last decade. Due to higher interest rates, they can earn more

on customers’ deposits by increasing their margin which is total interest received (i.e. by

customers paying interest on loans) minus total interest paid (i.e. by banks paying interest

on deposits). The first part of this difference is growing faster than the second as banks

are only willing to increase interest payments on customer deposits in a slow manner.

One the other hand, rising interest rates can also have a negative impact on banks. In a

low interest environment, the hurdle rate for profitable businesses is low. Rising interest

rates increase this hurdle rate which makes less business profitable and leads to a higher

number of loan defaults. The first banks that will face these problems are those that have

financed a larger number of start-ups and other speculative or unprofitable companies.

This is exactly the scenario that happened in the US in March 2023. The rapidly ris-

ing interest rates have caused two US banks (Silvergate Capital Bank and Silicon Valley

Bank) with significant exposure to the technology sector or cryptocurrencies and another

one (Signature Bank) to fail.

6 Concluding remarks

In this study, we analyse connectedness between inflation rates of advanced economies

in America and Europe using the recently developed TVP-VAR based extended joint

connectedness approach of Balcilar et al. (2021). This approach has several advantages

compared to previous connectedness approaches as it tracks changes in the parameters

faster and more accurately, is less sensitive for outlies, does not lose observations and can

be employed for low-frequency data. We find that the level of connectedness between

inflation rates is higher during times of GPR. It reached a new peak in 2022 due to the

Russian-Ukraine war and increased money supply and government spending during the

COVID-19 pandemic. Just before the beginning of the war in years 2020-2021, central
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banks’ quantitative easing reached unprecedented levels in most Western countries. The

quantitative easing measures with the largest extend have been carried out in the US,

where the Fed’s total assets almost doubled in the COVID-19 period and the government

distributed helicopter money to the citizens. This may explains why our results show that

the US is the largest transmitter of inflation shocks to other Western countries.

Future research can use these outcomes to provide additional insights in inflation

dynamics. Given the connectedness of inflation during times of GPR, one could analyse

the existence of certain inflation regimes. The latter can be useful for inflation forecasting

and thus help central banks to make adequate monetary policy decisions (Ftiti et al.,

2015), since interest rate decisions depend, among other things, on the forecasted inflation

rate.
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A Appendix

A.1 Technical Appendix

The TVP-VAR is represented as follows,

zt =Btzt−1 + ut ut ∼ N(0,St)

vec(Bt) =vec(Bt−1) + vt vt ∼ N(0,Rt)

where zt, zt−1, and ut represent k × 1 dimensional vectors and Bt and St are k × k

dimensional matrices. Furthermore, vec(Bt) and vt are k2 × 1 dimensional vectors and

Rt is an k2 × k2 dimensional matrix.

An empirical Bayes prior is applied where the priors, vec(B0) and S0, are equal to the

estimation results of a constant parameter VAR estimation based on the full dataset.

vec(B0) ∼N(vec(BOLS),ROLS)

S0 =SOLS.

The Kalman Filter estimation relies on forgetting factors (0 ≤ κi ≤ 1) which regulates

how fast the estimated coefficients vary over time. If the forgetting factor is set equal to 1

the algorithm collapses to a constant parameter VAR. Since it is assumed that parameters

are not changing dramatically from one day to another, κ2 is set equal to 0.99:

vec(Bt)|z1:t−1 ∼N(vec(Bt|t−1),Rt|t−1)

vec(Bt|t−1) =vec(Bt−1|t−1)

Rt =(1 − κ−1
2 )Rt−1|t−1

Rt|t−1 =Rt−1|t−1 + Rt

The multivariate EWMA procedure for St is updated in every step, while κ1 and κ2

are set equal to 0.99 based on the sensitivity results provided by Koop and Korobilis

(2014). Furthermore, Koop and Korobilis (2014) fix the forgetting factors, as well, even

if the forgetting factors can be estimated by the data, as in Koop and Korobilis (2013).

The main reason to fix the parameters is twofold (i) it increases computational burden
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substantially and (ii) the value added to the forecasting performance is questionable.

ût =zt − Bt|t−1zt−1

St =κ1St−1|t−1 + (1 − κ1)û′tût

vec(Bt) and Rt are updated by

vec(Bt)|z1:t ∼N(vec(Bt|t),Rt|t)

vec(Bt|t) =vec(Bt|t−1) + Rt|t−1z
′
t−1(St + zt−1Rt|t−1z

′
t−1)−1(zt − Bt|t−1zt−1)

Rt|t =Rt|t−1 + Rt|t−1z
′
t−1(St + zt−1Rt|t−1z

′
t−1)−1(zt−1Rt|t−1)

Finally, the variances, St, are updated by the EWMA procedure

ût|t =zt − Bt|tzt−1

St|t =κ1St−1|t−1 + (1 − κ1)û′t|tût|t
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Table 1: Summary statistics

YoY inflation USA CAN GBR DEU BEL NLD FRA ITA ESP PRT GRC
Mean 3.813 3.791 5.176 2.690 3.562 3.425 4.065 5.758 6.429 8.080 8.016
Variance 8.177 9.297 24.084 3.655 8.362 7.017 13.777 31.083 32.067 69.161 66.705
Skewness 1.478∗∗∗ 1.231∗∗∗ 2.010∗∗∗ 0.982∗∗∗ 1.602∗∗∗ 1.127∗∗∗ 1.277∗∗∗ 1.416∗∗∗ 1.193∗∗∗ 1.395∗∗∗ 0.867∗∗∗
Ex.Kurtosis 2.216∗∗∗ 0.703∗∗∗ 4.148∗∗∗ 0.678∗∗∗ 3.045∗∗∗ 0.816∗∗∗ 0.686∗∗∗ 1.162∗∗∗ 1.078∗∗∗ 1.769∗∗∗ -0.268
JB 421.492∗∗∗ 202.426∗∗∗ 1030.215∗∗∗ 133.278∗∗∗ 603.166∗∗∗ 177.265∗∗∗ 215.940∗∗∗ 289.467∗∗∗ 211.554∗∗∗ 336.904∗∗∗ 95.039∗∗∗
ERS -1.933∗ -1.646∗ -2.399∗∗ -1.405 -1.687∗ -0.845 -1.598 -1.762∗ -1.496 -1.597 -2.276∗∗
Q(24) 6387.831∗∗∗ 7194.650∗∗∗ 7088.121∗∗∗ 5684.809∗∗∗ 6099.877∗∗∗ 5862.086∗∗∗ 8098.486∗∗∗ 7749.255∗∗∗ 7509.461∗∗∗ 7049.314∗∗∗ 7379.507∗∗∗
Q2(24) 6260.181∗∗∗ 7175.107∗∗∗ 5738.953∗∗∗ 4711.938∗∗∗ 5451.409∗∗∗ 4896.902∗∗∗ 7432.168∗∗∗ 6542.569∗∗∗ 6854.058∗∗∗ 4452.155∗∗∗ 5630.578∗∗∗

Kendall’s τ USA CAN GBR DEU BEL NLD FRA ITA ESP PRT GRC
USA 1.000∗∗∗ 0.647∗∗∗ 0.564∗∗∗ 0.458∗∗∗ 0.541∗∗∗ 0.391∗∗∗ 0.575∗∗∗ 0.493∗∗∗ 0.513∗∗∗ 0.550∗∗∗ 0.461∗∗∗
CAN 0.647∗∗∗ 1.000∗∗∗ 0.550∗∗∗ 0.400∗∗∗ 0.540∗∗∗ 0.381∗∗∗ 0.623∗∗∗ 0.534∗∗∗ 0.559∗∗∗ 0.585∗∗∗ 0.457∗∗∗
GBR 0.564∗∗∗ 0.550∗∗∗ 1.000∗∗∗ 0.544∗∗∗ 0.565∗∗∗ 0.456∗∗∗ 0.666∗∗∗ 0.604∗∗∗ 0.597∗∗∗ 0.600∗∗∗ 0.456∗∗∗
DEU 0.458∗∗∗ 0.400∗∗∗ 0.544∗∗∗ 1.000∗∗∗ 0.600∗∗∗ 0.580∗∗∗ 0.555∗∗∗ 0.528∗∗∗ 0.516∗∗∗ 0.439∗∗∗ 0.363∗∗∗
BEL 0.541∗∗∗ 0.540∗∗∗ 0.565∗∗∗ 0.600∗∗∗ 1.000∗∗∗ 0.573∗∗∗ 0.632∗∗∗ 0.554∗∗∗ 0.585∗∗∗ 0.542∗∗∗ 0.383∗∗∗
NLD 0.391∗∗∗ 0.381∗∗∗ 0.456∗∗∗ 0.580∗∗∗ 0.573∗∗∗ 1.000∗∗∗ 0.492∗∗∗ 0.436∗∗∗ 0.472∗∗∗ 0.420∗∗∗ 0.230∗∗∗
FRA 0.575∗∗∗ 0.623∗∗∗ 0.666∗∗∗ 0.555∗∗∗ 0.632∗∗∗ 0.492∗∗∗ 1.000∗∗∗ 0.716∗∗∗ 0.702∗∗∗ 0.652∗∗∗ 0.458∗∗∗
ITA 0.493∗∗∗ 0.534∗∗∗ 0.604∗∗∗ 0.528∗∗∗ 0.554∗∗∗ 0.436∗∗∗ 0.716∗∗∗ 1.000∗∗∗ 0.760∗∗∗ 0.694∗∗∗ 0.592∗∗∗
ESP 0.513∗∗∗ 0.559∗∗∗ 0.597∗∗∗ 0.516∗∗∗ 0.585∗∗∗ 0.472∗∗∗ 0.702∗∗∗ 0.760∗∗∗ 1.000∗∗∗ 0.689∗∗∗ 0.535∗∗∗
PRT 0.550∗∗∗ 0.585∗∗∗ 0.600∗∗∗ 0.439∗∗∗ 0.542∗∗∗ 0.420∗∗∗ 0.652∗∗∗ 0.694∗∗∗ 0.689∗∗∗ 1.000∗∗∗ 0.607∗∗∗
GRC 0.461∗∗∗ 0.457∗∗∗ 0.456∗∗∗ 0.363∗∗∗ 0.383∗∗∗ 0.230∗∗∗ 0.458∗∗∗ 0.592∗∗∗ 0.535∗∗∗ 0.607∗∗∗ 1.000∗∗∗

Notes: The table reports key summary statistics. The first panel of the table includes mean, variance, as well as Skewness: D’Agostino (1970) test; Ex.Kurtosis: Anscombe and
Glynn (1983) test; JB: Jarque and Bera (1980) normality test; ERS: Elliott et al. (1996) unit-root test; Q(24) and Q2(24): Fisher and Gallagher (2012) weighted portmanteau
test. Kendall’s τ is reported in the second panel. ***,**,* denote significance level at 1%, 5% and 10%
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Table 2: Averaged connectedness table

USA CAN GBR DEU BEL NLD FRA ITA ESP PRT GRC FROM others
USA 38.11 (0.00) 9.24 (-17.28) 4.17 (-23.99) 5.83 (-13.47) 4.70 (-14.26) 3.27 (-15.26) 10.23 (-10.29) 4.53 (-16.82) 10.62 (-1.90) 6.86 (0.07) 2.44 (-7.29) 61.89
CAN 26.52 (17.28) 21.86 (0.00) 4.11 (-0.17) 5.82 (2.23) 4.36 (-1.03) 3.47 (0.77) 10.54 (5.67) 3.55 (-0.85) 10.07 (5.92) 6.98 (3.63) 2.73 (-0.24) 78.14
GBR 28.16 (23.99) 4.28 (0.17) 20.18 (0.00) 6.14 (-1.07) 8.21 (4.61) 2.79 (-3.49) 11.62 (6.38) 3.54 (-1.18) 6.01 (1.54) 6.03 (2.42) 3.03 (-1.35) 79.82
DEU 19.30 (13.47) 3.58 (-2.23) 7.21 (1.07) 38.37 (0.00) 8.35 (-5.36) 2.62 (-9.41) 7.65 (-1.38) 2.63 (-9.85) 5.04 (-5.52) 2.34 (-3.45) 2.91 (-5.15) 61.63
BEL 18.96 (14.26) 5.39 (1.03) 3.60 (-4.61) 13.71 (5.36) 19.17 (0.00) 4.91 (-5.67) 17.17 (12.99) 3.42 (-0.36) 5.96 (1.48) 3.58 (0.85) 4.13 (0.10) 80.83
NLD 18.54 (15.26) 2.70 (-0.77) 6.28 (3.49) 12.03 (9.41) 10.58 (5.67) 24.24 (0.00) 10.77 (7.72) 2.64 (0.00) 4.09 (0.08) 2.98 (-0.14) 5.16 (2.77) 75.76
FRA 20.52 (10.29) 4.88 (-5.67) 5.24 (-6.38) 9.03 (1.38) 4.19 (-12.99) 3.05 (-7.72) 24.27 (0.00) 6.55 (-10.58) 6.87 (-6.34) 10.06 (0.46) 5.36 (1.49) 75.73
ITA 21.36 (16.82) 4.40 (0.85) 4.71 (1.18) 12.48 (9.85) 3.77 (0.36) 2.63 (0.00) 17.13 (10.58) 13.38 (0.00) 6.97 (-3.45) 8.26 (5.44) 4.91 (1.61) 86.62
ESP 12.52 (1.90) 4.15 (-5.92) 4.47 (-1.54) 10.57 (5.52) 4.49 (-1.48) 4.01 (-0.08) 13.21 (6.34) 10.41 (3.45) 23.21 (0.00) 8.87 (3.44) 4.09 (-3.49) 76.79
PRT 6.79 (-0.07) 3.34 (-3.63) 3.61 (-2.42) 5.80 (3.45) 2.72 (-0.85) 3.12 (0.14) 9.60 (-0.46) 2.82 (-5.44) 5.43 (-3.44) 50.71 (0.00) 6.05 (-0.75) 49.29
GRC 9.73 (7.29) 2.97 (0.24) 4.37 (1.35) 8.06 (5.15) 4.03 (-0.10) 2.39 (-2.77) 3.86 (-1.49) 3.30 (-1.61) 7.58 (3.49) 6.80 (0.75) 46.90 (0.00) 53.10
TO others 182.40 44.94 47.79 89.44 55.39 32.26 111.78 43.38 68.64 62.75 40.81 779.60
Inc. own 220.51 66.80 67.98 127.81 74.56 56.50 136.05 56.76 91.85 113.46 87.71 TCI
NET spillovers 120.51 -33.20 -32.02 27.81 -25.44 -43.50 36.05 -43.24 -8.15 13.46 -12.29 70.87
Net pairwise transmission 9 4 4 8 3 2 6 2 5 8 4

Notes: The table reports results of the TVP-VAR (0.99, 0.99) extended joint connectedness approach with a lag length of order 1 (BIC) and a 60-step-ahead generalized forecast error variance decomposition
(Balcilar et al., 2021). The values in parentheses represent the net pairwise directional connectedness measures.
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Figure 1: Year-over-year inflation rates

Notes: The figure presents YoY inflation rates calculated from non-seasonally adjusted consumer price
indices for the period May 1963 to November 2022. The data has been retrieved from the Federal
Reserve Economic Database. USA=United States of America, CAN=Canada, GBR=Great Britain,
DEU=Germany, BEL=Belgium, NLD=Netherlands, FRA=France, ITA=Italy, ESP=Spain,
PRT=Portugal and GRC=Greece.

Figure 2: Net pairwise directional connectedness

Notes: The figure presents results based on the TVP-VAR extended joint connectedness approach with a
lag length of order 1 (BIC) and a 60-step-ahead generalized forecast error variance decomposition
(Balcilar et al., 2021). The yellow (blue) circles mark net receivers (transmitters) of shocks.
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Figure 3: Dynamic total connectedness

Notes: The figure presents results based on the TVP-VAR extended joint connectedness approach with a
lag length of order 1 (BIC) and a 60-step-ahead generalized forecast error variance decomposition
(Balcilar et al., 2021).
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Figure 4: Quantile-on-quantile between TCIt and GPRt−1

Notes: The figures shows results based on the quantile-on-quantile (QQ) approach of Sim and Zhou
(2015). TCI=Total connectedness index, GPR=Geopolitical risk index.
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Figure 5: Quantile-on-quantile between TCIt and GPRAt−1

Notes: The figures shows results based on the quantile-on-quantile (QQ) approach of Sim and Zhou
(2015). TCI=Total connectedness index, GPRA=Geopolitical risk Acts index.
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