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Abstract 

This paper examines the predictability of bubbles across global stock markets and whether or 
not synchronicity in bubble formation across markets can be predicted via metrics of market 
risk that are readily available. Utilizing the gold to platinum price ratio (LGP) as an easy to 
implement risk metric and the Log-Periodic Power Law Singularity (LPPLS) model to detect 
positive and negative bubble formation at different time scales, we document evidence of 
synchronized boom and bust cycles of the seven developed equity markets in the G7 bloc. More 
importantly, our analysis shows that bubbles and their comovements are predictable by the 
gold to platinum price ratio although the predictive relationship is only detectible via models 
that account for non-linearities in the data. We find that predictability is generally stronger for 
negative bubbles than their positive counterparts and the predictive impact of LGP is strongest 
for the long-term for negative bubbles, while it is strongest in the short-run for positive bubbles, 
meaning that the gold to platinum price ratio serves as a more robust predictor of deeper 
downward accelerating price formations followed by a rally. The predictability results for the 
U.S. also carries over to bubble formation in the remaining stock markets of the G7 bloc, to the 
extent that the gold to platinum price ratio also helps to explain the synchronicity of bubbles 
across the G7. Our findings provide a valuable opening for market regulators as the results 
show that readily available metrics of market risk can be used to model and monitor the 
occurrence of bubbles in financial markets as well as the connectedness of bubbles across the 
global markets. 
JEL Classification: C22, G15, Q02 
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1. Introduction 
Price bubbles in financial markets reflect deviations from fundamental values which can 

occur within a rational, efficient market setting or as a result of inefficiencies in market 
mechanisms that eventually pave the way to bubble formations and subsequent crashes in asset 
prices. While modelling rational expectation bubbles is often plagued with join hypothesis 
issues, a large number of works argue that bubbles occur due to market inefficiencies associated 
with heterogeneous beliefs (Scheinkman and Xiong, 2003), information asymmetries (Allen 
and Gorton, 1993), information cascades by noise traders (De Long et al., 1990; Shleifer, 2000) 
as well as limits to arbitrage (Shleifer and Vishny, 1997; Abreu and Brunnermeier, 2003; 
among others). Despite the multitude of studies that focus on the detection of price bubbles in 
different contexts, however, the predictability of bubbles is relatively understudied. 
Furthermore, the literature has not provided any insight to the connectedness of bubbles across 
global financial markets although the issue has significant implications for the stability of the 
financial system and policy making.  

This paper provides novel insight to the literature on bubbles in financial markets by 
examining the predictability of bubbles across a wide range of global stock markets and 
whether or not synchronicity in bubble formation across markets can be predicted via metrics 
of market risk that are readily available. This is an important consideration for not only pricing 
and risk management purposes, but also for policy making as market regulators can use the 
results from such a predictive analysis to improve the accuracy of forecasting models for boom 
and bust market conditions and their spillover effects across markets. Furthermore, it is now 
theoretically (Biswas et al., 2020) and empirically (Reinhart and Rogoff, 2009; Brunnermeier 
and Oehmke, 2013; Jordà et al., 2015) established that bursting of bubbles leads to protracted 
recessions and substantial economic losses. Understandably then, a high-frequency analysis of 
bubble detection and its predictability across markets is of paramount importance to 
policymakers for the design of appropriate policy responses as boom-bust cycles in stock 
markets are likely to be informative about the future path of low frequency macroeconomic 
variables, with the information being fed into mixed data sampling (MIDAS) models for 
nowcasting (Bańbura et al., 2011) in addition to its welfare implications (Narayan et al., 2016). 

In our application, we employ the popularly utilized Log-Periodic Power Law Singularity 
(LPPLS) model of Johansen et al. (1999, 2000) and Sornette (2003) to detect positive (upward 
accelerating price followed by a crash) and negative (downward accelerating price followed by 
a rally) bubbles and apply them to a large number of global stock markets including those in 
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the G7 bloc. Arguing that a bubble can emerge intrinsically out of the natural functioning of 
the market, the LPPLS model aims to detect super-exponential growth of asset prices by 
modeling deviations around the price growth in a market setting that is governed by sentiment 
rather than some real underlying value (Sornette and Cauwels, 2015). In this setting, while 
agents are fully aware of the mispricing, the price continues to rise due to a lack of 
synchronization of the arbitragers, either due to disagreements about the time of the beginning 
(Abreu and Brunnermeier 2003) or of the end (Demos and Sornette, 2017) of the bubble. Next, 
following Demirer et al. (2019), we compute the multi-scale LPPLS confidence indicators to 
characterize positive and negative bubbles at the short, medium, and long-time scales. Unlike 
other bubble detection methodologies (see Balcilar et al., 2016; Zhang et al., 2016; and Sornette 
et al., 2018 for detailed reviews), our model allows us to identify both positive and negative 
multi-scale bubbles, paving the way for our subsequent predictive analysis to assess the 
possible asymmetric predictive effects of market uncertainty over bubble formation at different 
time scales. This is an important consideration in terms of the practical applications of bubble 
prediction as crashes and recoveries at different time horizons can convey different information 
for market participants, in line with the Heterogeneous Market Hypothesis (HMH; Müller et 
al., 1997).1   

Having identified positive and negative bubbles at different time scales, our subsequent 
analysis focuses on the predictability of these bubbles via risk metrics that are readily available 
for market participants. To that end, we employ the gold to platinum price ratio (GP) of Huang 
and Kilic (2019) as an easy to implement risk metric that is shown to capture persistent 
variation in risk and predict future stock returns in the time series. Considering the dual nature 
of gold as both a consumption good (mostly jewellery) and an investment tool that preserves 
value during times of distress, while platinum is a precious metal with similar uses as gold in 
consumption, Huang and Kilic (2019) argue that the ratio of gold to platinum prices should be 
largely insulated from shocks to consumption and jewellery demand, thus capturing 
information on the variation in aggregate market risk. This risk metric has been shown to serve 
as a robust predictor of equity returns in the United States (US) and other developed stock 
markets, both at the aggregate- and cross-sectional levels, as well as for industry returns (Pham 
and Rudolf, 2021), bond risk premia (Bouri et al., 2021) and tail risks (Salisu et al., 2022).2  
                                                             
1 The HMH states that different classes of market agents namely, investors, speculators and traders, populate asset 
markets and differ in their sensitivity to information flows at different time horizons. 
2 Huang and Kilic (2019) develop a theoretical model where GP is insulated from shocks to consumption, since 
they affect gold and platinum prices equally, in which increases in disaster probabilities raise risk premiums, 
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As noted by Lehnert (2020), periods of fear and euphoria can be associated with high 
and low aversion towards risk, respectively, translating into weak (strong) investor sentiment 
as captured by the corresponding high and low values of GP. In that regard, the literature 
provides several channels by which investor sentiment and bubble formation in financial 
markets can be related (see, Scherbina and Schlusche (2014) for a detailed review). The first 
class of models concerns the differences of opinion and short sale constraints, arguing that in 
a market where optimistic investors are boundedly rational, or simply dogmatic about their 
beliefs, they fail to consider that other agents in the economy may have more pessimistic views 
about an asset, but cannot sell it due to short sale constraints. In this scenario, the resulting 
market price of the asset remains too high relative to the fair value. In contrast, the second class 
of models incorporate feedback trading which paves the way to bubble formation as one group 
of traders builds their trading demands solely on past price movements, hence driving bubble 
formation for a period of time before the bubble eventually collapses. The third theoretical 
model is based on a biased self-attribution model wherein a representative investor suffers from 
biased self-attribution, which leads other agents to consider signals that confirm their beliefs 
and dismiss noise signals that contradict their beliefs. Finally, the fourth model builds on the 
representativeness heuristic, which combines two behavioural phenomena, the 
representativeness heuristic and conservatism bias. The representativeness heuristic leads 
investors to put too much weight on attention-grabbing (strong) news, which leads to 
overreaction; whereas, conservatism bias is the investors’ tendency to be too slow to revise 
models such that they under-weigh relevant but non-attention-grabbing (routine) evidence, 
which in turn leads to under-reaction. Against this theoretical background, our analysis extends 
the literature on sentiment and bubble formation in a novel direction regarding the 
predictability of stock market bubbles via proxies of market sentiment or risk. 

The predictive analysis is conducted via the nonparametric causality-in-quantiles test 
proposed by Jeong et al. (2012). Our employed test is a more elaborate procedure for detecting 
causality at each point of the bubble indicators, capturing the existence or non-existence of 
predictability due to GP at various quantiles of the bubble confidence indicators, which makes 
the predictive analysis inherently time-varying in nature. As a more general test, our method is 
more likely to identify causality at specific quantiles when the conditional mean-based tests 
                                                             
leading to higher discount rates and lower stock prices. While gold and platinum prices fall due to higher discount 
rates, gold prices fall by less than platinum prices due to the higher countercyclical component of its service flow. 
As a result, GP is shown to be high when stock prices are low and the equity risk premium is high, thus providing 
the ratio with the power to predict future stock returns. 
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may fail. Additionally, since we do not need to determine the number of regimes as in Markov-
switching models of causality (Ben Nasr et al. 2015; Balcilar et al. 2018a) and can test for 
predictability at each point of the conditional distribution characterizing specific bubble 
regimes, our method does not suffer from any misspecification in terms of specifying and 
testing for the optimal number of regimes. To the best of our knowledge, ours is the first study 
to analyse the high-frequency predictive impact of gold to platinum rice ratio on multi-scale 
positive and negative bubbles using a nonparametric quantiles-in-causality approach.  

Our findings show that the LPPLS framework is a flexible tool for detecting positive 
and negative bubbles across different time scales. We find that shorter time scale indicators are 
best suited for detecting smaller crashes or rallies, while the medium and longer time scale 
indicators are best suited for detecting larger crashes or rallies. While the long-term scale 
confidence indicators produce fewer signals, they appear to capture larger crashes or rallies, 
and the shorter scale indicators generate more frequent signals that precede smaller crashes or 
rallies. Furthermore, we observe significant evidence of synchronized boom and bust cycles of 
the seven developed equity markets in the G7 bloc, implied by positive contemporaneous 
correlations for both the positive and negative bubble indicators based on a Bayesian Gaussian 
graphical vector autoregressive framework. More importantly, our analysis shows that bubbles 
and their comovements are predictable by the gold to platinum price ratio although the 
predictive relationship is only detectible via models that account for non-linearities in the data. 
While predictability is generally stronger for negative bubbles than their positive counterparts, 
we find that the predictive impact is strongest for the long-term, followed by the medium- and 
short-term indicators for negative bubbles. In the case of the positive bubbles, causality is found 
to be strongest in the short-run, meaning that the gold to platinum price ratio serves as a more 
robust predictor of deeper downward accelerating price formations followed by a rally, i.e., 
long- and medium-term negative bubbles. Our findings provide a valuable opening for market 
regulators as the results show that the readily available metric of market risk based on the gold 
to platinum price ratio can be used to model and monitor the occurrence of bubble patterns in 
financial markets as well as the connectedness of these bubbles across the global markets. 

The remainder of the paper is organized as follows. Section 2 outlines the 
methodologies associated with the detection of bubbles and the predictive analysis along with 
the data used in the empirical analysis. Section 3 presents the empirical results and Section 4 
concludes the paper. 
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2. Methodology & Data 
2.1. Estimating the Multi-Scale Log-Periodic Power Law Singularity (LPPLS) Model 

The first part of our analysis focuses on quantifying the multiscale positive and 
negative bubble indicators. To this end, we use the stable and robust Log-Periodic Power 
Law Singularity (LPPLS) model calibration scheme developed by Filimonov and Sornette 
(2013).3 This framework builds on a setting in which herding behavior of noise traders 
destabilizes asset prices via correlated trades and the risk of a crash from herding behavior 
is modeled as a sum of power law singularity associated with large scale amplitude 
oscillations that are periodic in the logarithm of the time to singularity of critical time. In 
this framework, the expected trajectory of the log price is modeled via 

[ln ( )] = + ( − ) + ( − ) cos( ln( − ) − ) (1) 
where the parameter  represents the critical time (the date of the termination of the 
bubble);  is the expected log value of the observed time-series, i.e., the stock price-
dividend ratio, at time ,  is the amplitude of the power law acceleration, and  is the 
relative magnitude of the log-periodic oscillations. The exponent of the power law growth 
is given by  and the frequency of the log-periodic oscillations is captured by  , while  
represents a phase shift parameter. 

As noted by Demirer et al. (2019), the power law singularity captures the positive 
feedback mechanism associated with the correlated trades driven by herding behaviour of 
noise traders. In this framework, the log-periodic oscillations represent the tension and 
competition between the traders who act upon rational expectations and noise traders who 
tend to engage in herding behavior, thus resulting in deviations around the faster than-
exponential price growth as the market approaches a finite-time-singularity at tc. Following 
Filimonov and Sornette (2013), Equation (1) is reformulated to reduce the complexity of 
the calibration process by eliminating the nonlinear parameter  and expanding the linear 
parameter  to be =  cos  and  =   cos . The new formulation yields 

[ln ( )] = + ( ) + ( ) + (ℎ) (2) 
where 

= ( − )  
                                                             
3 The discussion of the MS-LPPLS-CI approach draws heavily from Demirer et al. (2019), Caraiani et al. (2023), 
Gupta et al. (2023), and van Eyden et al. (2023). 
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= ( − ) cos[ ln( − )] 
ℎ = ( − ) sin[ ln( − )] 

To estimate the three nonlinear parameters, i.e. { , , }, and four linear parameters, 
i.e. { , , , }, we fit Equation (2) to the log of the price-dividend ratio. This is done by 
using  norm to obtain the following sum of squared residuals as 

( , , , , , , ) = ln ( ) − − ( ) − ( ) − ( )    
(3) 

Since the estimation of the three nonlinear parameters depend on the four linear 
parameters, we use the following cost function: 

( , , ) = min, , , ( , , , , , , ) = , , , , , ,   (4) 

where the hat symbol indicates the estimated parameters. The four linear parameters are 
estimated by solving the optimization problem: 

{ , , , } = arg min, , , ( , , , , , , )  (5) 

which can be done analytically by solving the following matrix equation: 
∑ ∑ ∑ℎ

∑ ∑  ∑ ∑ ℎ
∑ ∑ ∑ ∑ ℎ
∑ℎ ∑ ℎ ∑ ℎ ∑ℎ

=
∑ ln

∑ f  ln
∑ g  ln
∑ h  ln

 
 
(6) 

Finally, the three nonlinear parameters are determined by solving the following 
nonlinear optimization problem: 

{ ̂ , , } = arg min, , ( , , ) (7) 
We use the Sequential Least Squares Programming (SLSQP) search algorithm (Kraft, 
1988) to find the best estimation of the three nonlinear parameters { , , }. 

In our empirical analysis, we explore the predictability of negative and positive bubble 
patterns as well as their predictability across different time scales. To that end, the LPPLS 
confidence indicator, introduced by Sornette et al. (2015), provides an appropriate setting 
to capture asymmetric bubble dynamics across the short and long horizons. In this 
framework, positive bubbles are captured within a scenario wherein the price of an asset 
grows super-exponentially towards tc, eventually resulting in a change of regime (in 
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general a crash). Similarly, negative bubbles are captured as the exact mirror of positive 
bubbles with respect to the horizontal axis, featured by an accelerating price drop, resulting 
in a regime change that is generally in the form of a substantial price appreciation, i.e. a 
potential ‘negative’ crash. The LPPLS confidence indicators (CI) are estimated using the 
log price-dividend ratio time series of each asset (each stock market index in our case) such 
that the larger the confidence indicator value, the more reliable the LPPLS bubble pattern 
and vice versa. The indicator series is computed by calibrating the LPPLS model to 
shrinking time windows by shifting the initial observation  forward in time towards the 
final observation  with a step . For each LPPLS model fit, the estimated parameters 
are filtered against established thresholds and the qualified fits are taken as a fraction of 
the total number of positive or negative fits. A positive fit has estimated  <  0 and a 
negative fit has estimated  >  0. 

Following Demirer et al. (2019), we incorporate bubbles of varying multiple time-
scales into our analysis and sample the time series in steps of 5 trading days. We create the 
nested windows [ , ] and iterate through each window in steps of 2 trading days. In this 
way, we obtain a weekly resolution, based on which we construct the following indicators: 
 Short-term bubble: A number ∈ [0,1] which denotes the fraction of qualified fits for 

estimation windows of length : = − ∈ [30: 90] trading days per . This 
indicator is comprised of (90 − 30)/2 = 30 fits. 

 Medium-term bubble: A number ∈ [0,1] which denotes the fraction of qualified fits for 
estimation windows of length : = − ∈ [30: 90] trading days per . This 
indicator is comprised of (300 − 90)/2 = 105 fits. 

 Long-term bubble: A number ∈ [0, 1] which denotes the fraction of qualified fits for 
estimation windows of length : = − ∈ [30: 90] trading days per . This 
indicator is comprised of (745 − 300)/2 = 223 fits. 
After calibrating the model, the following filter conditions are applied to determine 

which fits are qualified: 
∈ [0.01,0.99] 

∈ [2,15] 
∈ [ ( − 60, − 0.5( − )), (252, + 0.5( − ))] 

> 2.5 
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> 0.5 
where 

= 2 ln −
−  

= | |
| |  

The confidence indicators across the short, medium and long-time scales capture the 
strength of the LPPLS bubble structure in their respective time scales. For example, if the short-
term CI takes on a large value, while the medium and long-term CI values are small, this would 
be an indication of bubble formation recently within the last three months. In our application, 
this provides an appropriate setting to examine the short and long-term predictability patterns 
in bubbles using the corresponding confidence indicators at different time scales. 
2.2. Nonparametric Causality-in-Quantiles Test 

In order to explore the predictive power of the gold-to-platinum price ratio (LGP), serving 
as a metric of risk, over bubble formation in financial markets, we utilize a dynamic 
methodology that allows us to capture the causal linkages between the gold-to-platinum price 
ratio and the bubble confidence indicators during various market states. To that end, we utilize 
the nonparametric quantiles-based causality test developed by Jeong et al. (2012).4 This test 
allows us to detect predictability across the entire conditional distributions of the LPPLS-CIs, 
resulting from the gold-to-platinum price ratio, while simultaneously controlling for 
misspecification due to uncaptured nonlinearity and structural breaks in these relationships. 
Accordingly, this econometric framework allows us to circumvent potential misspecification 
due to nonlinearity and instability, compared to conditional mean-reliant nonlinear and/or 
nonparametric causality tests (see, for example, Hiemstra and Jones (1994), Diks and 
Panchenko (2005, 2006), Nishiyama et al. (2011)). 

Let  denote a the LLPLS-CI series for a given stock market and  the gold to platinum 
price ratio, i.e., LGP. Further, let ≡ ( , … , ), ≡ ( , … , ),  =
( , ), and |∙( | •) denote the conditional distribution of  given •.  Defining ( ) ≡

                                                             
4 Our presentation relies on expositions of the the nonparametric quantiles-based causality test in several 
prominent recent papers, for example, Balcilar et al. (2017, 2018b, 2021), Gkillas et al. (2019, 2021), among 
others. 
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( | ) and ( ) ≡ ( | ), we have  | { ( )| } =   with 
probability one. The (non)causality in the q -th quantile hypotheses to be tested are: 

:   | { ( )| } = = 1                                                                                     (8)  
:   | { ( )| } = < 1                                                                                      (9)  
such that the rejection of the null implies that  causes  in the -th quantile with respect 

to the lag-vector of ( , … , , , … , ). Jeong et al. (2012) show that the feasible 
kernel-based test statistics has the following format: 

               = 1
( − 1)ℎ

−
ℎ ̂ ̂  

,
                                              (10) 

where (•) is the kernel function with bandwidth ℎ,  is the sample size,  is the lag order, 
and ̂ = { ≤ ( )} −  is the regression error, where ( ) is an estimate of the 

-th conditional quantile and {•} is the indicator function. The Nadarya-Watson kernel 
estimator of ( ) is given by 

( ) = ∑ −ℎ  { ≤ },
∑ −ℎ,

                                                                   (11) 

with (•) denoting the kernel function. The empirical implementation of causality testing via 
quantiles entails specifying three key parameters: the bandwidth (h), the lag order (p), and the 
kernel types for (∙) and (∙). We use a lag order of one based on the Schwarz Information 
Criterion (SIC) and determine ℎ by the leave-one-out least-squares cross validation. Finally, 
for (∙) and  (∙), we use Gaussian kernels. 
 
2.3. Data 
 

Our dataset includes daily stock price index and dividend series for the US and the 
remaining six of the G7 countries, in their local currencies, obtained from Refinitiv Datastream. 
Although our focus is specifically on the US stock market, we also consider the predictive 
impact of GP on bubble formation in international stock markets, namely the entire G7 bloc, 
as the gold to platinum price ratio can be considered as a metric of risk worldwide considering 
that gold and platinum are two globally traded commodities. In this regard, the choice of G7 
countries was driven by two factors: First, due to the availability reliable stock market data that 
would allow us to track the behaviour of important episodes of bubbles, and its predictability 
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due to GP, spanning nearly half a century, and; second because this group of countries accounts 
for nearly two-thirds of global net wealth and nearly half of world output, and hence, boom-
bust cycles in these stock markets are likely to have a worldwide spillover effect, impacting 
the sustainability of the global financial system (Das et al., 2019). The natural logarithmic 
values of the daily price-dividend ratios for each stock market are used to obtain the positive 
and negative weekly bubble indicators at the short-, medium-, and long- time scales. In line 
with the existing literature on bubble estimation, we use the price-dividend ratio to model the 
price trajectory of prices which yields confidence indicator series that are free from the possible 
effect of currency units and exchange rate movements. Each of the six derived multi-scale 
LPPLS-CI values for the US, and Canada, France, Germany, Italy, Japan and the UK, is 
sampled at a weekly frequency. Similarly, the daily gold and platinum price data, in US dollars, 
is obtained from the London Bullion Market Association (now known simply as LBMA).5The 
daily data is then converted to weekly frequency by taking averages over the number of trading 
days during a week. We then compute the natural logarithmic values of the unit-free price-ratio 
of gold-to-platinum prices (LGP). The LGP is then matched with the data for the bubble 
indicators, resulting in 2489 observations over the sample period covering the 1st week of (7th) 
January 1973 to 2nd week of (13th) September 2020. 

Figure 1 presents the natural logarithm of the ratio of gold to platinum prices (LGP) on a 
weekly frequency. While the data exhibits a rather stable pattern for much of the early part of 
the 2000s, we observe a clear regime change into a persistent rising pattern with the global 
financial crisis in 2007, indicating the increased risk in financial markets that has not really 
subsided since the global financial crisis. Table 1 presents several summary statistics for the 
U.S. stock market. Clearly, the bubble indicator series exhibit non-normal behaviour with the 
presence of extreme values in both directions along positive skewness. At the same, we observe 
higher mean values for positive bubble indicator series across all time scales, implying the 
prevalence of booms in stock market dynamics as opposed to crash patterns. Overall, our 
preliminary checks indicate that the MS-LPPLS confidence indicators successfully capture the 
bubble-like patterns in global financial markets, while the descriptive statistics provide the 
initial motivation for our quantiles-based causality framework.6 
                                                             
5 https://www.lbma.org.uk/prices-and-data/precious-metal-prices#/. 
6 Figure A1 in the Appendix also presents the quantile-on-quantile relationships between the MS-LPPLS-CIs of 
the US and the LGP, based on the econometric framework of Sim and Zou (2015). As can be seen from the plots, 
unconditional quantiles of LGP tend to be negatively (positively) associated with the positive (negative) 
indicators, with very little variation across the size (quantiles) of LGP, thus providing further motivation to rely 
on a quantiles-based approach, rather than a quantile-on-quantile method. Intuitively, the sign of the plots make 
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[INSERT FIGURE 1] 
 [INSERT TABLE 1]  

 
3.  Empirical Findings 
3.1. Bubble Detection 

Figure 1 presents the time series plots for the Multi-Scale Log-Periodic Power Law 
Singularity Confidence Indicators (MS-LPPLS-CIs) of the G7 countries. The CI series at each 
time scale is shown in different colours with the short, medium and long-term indicators 
displayed in green, purple and red color, respectively, while the log price-to-dividend ratio is 
displayed in black. Higher confidence indicator values for a particular scale indicate that the 
LPPLS signature is present for many of the fitting windows to which the model was calibrated, 
making it more reliable. From a brief visual inspection of the plots in Figure 1, we find that 
there are many spikes in the bubble indicator values preceding regime shifts in the underlying 
log price-to-dividend ratio. 

The long-term positive LPPLS-CI (red lines in Figure 1) is comprised of 223 single 
LPPLS model fits spanning fitting windows of size 300 to 745 observations. This represents 
nearly 3 years of data. Due to the larger calibration time-period, we anticipate that large 
indicator values will occur less frequently at this scale than they would for smaller scales. In 
general, we observe four strong positive long-term LPPLS-CI values. The first is observed in 
the US, and Canada, France, Germany, Italy, and the UK, from January 1973 to December 
1974. This crash came on the heels of the collapse of the Bretton Woods system, and the 
devaluation of the U.S. dollar from the Smithsonian Agreement. Next, we observe a strong 
positive long-term LPPLS-CI value preceding ‘‘Black Monday’’ in October 1987 in the US, 
as well as in Canada, Japan, and the UK. A similar observation for the US, Canada, and the 
UK, as well as to some extent for Germany, can be made during the Asian Financial Crisis of 
1997. We also see a clustering of highly positive LPPLS-CI values leading up to the Dot-com 
bubble burst over March 2000 to October 2002, especially for the US, along with Canada, 
France, Italy, and the UK, but immediately following the crash, we see strong negative LPPLS-
CI values, which in turn, signal rallies in these countries. While not so much for the positive 

                                                             
sense, as LGP captures risk, its higher values will speed up the crash and delay the recovery, thus reducing the 
positive MS-LPPLS-CIs, and increasing the negative indicators.   
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LPPLS-CIs, there are strong negative LPPLS-CI values for all G7 constituents except the US 
following the GFC, suggesting faster stock market recoveries in the remaining six countries. 

The medium-term LPPLS-CI (purple lines in Figure 1) uses 105 fits and spans fitting 
windows of size 90 to 300 observations. This represents a little over one year of data. In general, 
we observe pronounced LPPLS-CI values (positive and negative) at points where we detected 
the same for the long-term indicators. In addition, we see that strong positive medium-term 
LPPLS-CI values were formed before strong long-term LPPLS-CI values leading up to the 
GFC. In contrast, the short-term LPPLS-CI (green lines in Figure 1) uses 30 fits from fitting 
windows of size 30 to 90 observations. This represents just 1 month. As can be seen from 
Figure 1, this scale produces the most signals. It can also be inferred from the figure that the 
smallest crashes/rallies are signalled from this scale, possibly as these indicators pick up 
idiosyncratic signals. However, we still can see small corrections immediately following a 
strong short-term LPPLS-CI value. It is also interesting to notice, just as with the medium-term 
indicators preceding the long-term indicators, the short-term indicators tend to lead the 
medium-term ones, in the context of the major bubble dates identified by the medium- and 
long-run indicators discussed above. This adds support to the finding from Demirer et al. 
(2019) that the maturation of the bubble towards instability is present across several distinct 
time-scales. 

Given that the volatility of an asset can be modelled as an increasing function of the square 
root of time, one can conclude that shorter time-scales are best-suited for detecting smaller 
crashes or rallies, while the medium and longer time-scales are best-suited for detecting larger 
crashes or rallies. This intuition is confirmed empirically by the patterns observed in Figure 2 
wherein the long-term scale confidence indicators produce fewer signals but appear to capture 
larger crashes or rallies, while the shorter-scale indicators generate more frequent signals that 
precede smaller crashes or rallies. Overall, these empirical findings support the claim made in 
the introduction that the LPPLS framework is a flexible tool for detecting positive and negative 
bubbles across different time-scales. Note that, besides the crises episodes discussed above, 
these indicators in general also show spikes associated with crashes and recoveries before and 
around the European sovereign debt crisis from 2009 to 2012, the ‘‘Brexit’’ in 2016, and to 
some extent COVID-19 as well, especially for the US in the case of the positive bubble 
indicator. 

[INSERT FIGURE 2] 
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3.2. Comovement of Bubbles 
Examining the computed confidence indicators across the different stock markets in 

Figure 2, we observe similar timing of strong (positive and negative) LPPLS-CI values between 
the US and the remaining six countries of the G7 bloc. This lends to the idea of synchronized 
boom and bust cycles of the seven developed equity markets. Indeed, the issue of synchronicity 
is statistically confirmed by Bayesian Gaussian graphical vector autoregressive (BGGVAR) 
models applied to each of the six multi-scale LPPLS-CIs associated with the G7 countries, i.e., 
each seven variable BGGVAR has one particular bubble indicator of the seven considered 
stock markets. The BGGVAR framework combines the time series chain graphical model 
concept of Abegaz and Wit (2013) with the Bayesian Gaussian Graphical Models outlined in 
Williams (2021). 

In our application, the strength of the links in terms of a particular LPPLS-CI across the 
G7 markets in the BGGVAR can be assessed by computing the so-called partial direct 
correlations and partial contemporaneous correlations as measures of strength of the lagged 
and contemporaneous associations across the country-specific bubble indicators. Here, the 
partial contemporaneous correlation is defined as the correlation between the LPPLS-CIs of 
two countries at the same point in time after removing the linear effects of the other countries 
at the same point in time and all countries at previous times. As is known, the direct 
relationships among the variables across time are captured in the VAR model by the regression 
coefficients. In the BGGVAR framework, the strength of lagged associations between variables 
is captured by the so-called partial directed correlations. Specifically, in a VAR(1) setting that 
is adopted in our case based on the SIC, the partial direct correlations measure the linear 
association between a dependent variable, i.e., the LPPLS-CI of a particular country at time t 
and an explanatory variable (the LPPLS-CI of another country) at time t-1 after removing the 
linear effects of all other variables at time t-1. The partial direct correlations thus quantify the 
direct influence of an explanatory variable on the dependent variable. 

Figure 3 presents the estimated partial contemporaneous and partial direct correlations 
under the six multiscale LPPLS-CIs involving the G7 countries. The green lines in the figures 
indicate lower (higher) positive correlations depending on the size of the line and lighter 
(darker) red lines indicate lower (higher) negative correlations. Panels A (D), B (E), C (F) 
present the findings for the short, medium and long-time scales for the positive (negative) 
bubble indicators. In each panel, partial contemporaneous are presented on the left and partial 
direct correlations are presented on the right. We observe in general stronger evidence of 
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positive contemporaneous correlations for both the positive and negative bubble indicators 
compared to direct correlations. This is possibly due to bubbles being transmitted across 
countries within a week, i.e., instantaneously in the weekly time frame, rather than with a delay. 
While the close association of bubbles between the U.S. and Canada is observed, particularly 
at the short and medium time scales, we also observe strong bubble interactions within 
European markets as a block, involving Germany, France, Italy and the UK in particular. 
Interestingly, the US and UK exhibit strong connectedness in their long-term negative bubble 
indicators, while stronger cross-market associations of negative bubbles are observed at the 
short and medium time scales.  

[INSERT FIGURE 3] 
3.3. Gold-to-Platinum Price-Ratio and Predictability of Bubbles 

Having estimated the bubble indicators and provided preliminary insight to the 
comovement of bubble patterns across markets, we proceed with our main focus that is the 
predictability of these bubbles as well as their interactions. To this end, motivated by the 
evidence on Huang and Kilic (2019) that the Gold-to-Platinum price ratio (LGP) captures the 
time-variation is risk and explains the cross-section of stock market returns, we next analyse 
the nature of predictability emanating from LGP to the short-, medium-, and long-term positive 
and negative bubble indicators of the US in particular, as well as the remaining six of the G7 
countries. To further enlarge our understanding, motivated by the visual and statistical evidence 
from the BGGVAR analysis indicating strong evidence of synchronized boom and bust cycles 
of the seven developed equity markets, following Jackson et al. (2016), we estimated six 
dynamic factor models (DFM) involving the six bubble indicators associated with the G7 
countries and derived the corresponding six common (global) factors associated with the 
bubble indicators. This allows us to examine the predictability of bubble comovements across 
the G7 markets through the extracted factors. This is an important consideration as detecting 
the role of GP in driving the commonality in movements of bubbles clearly has important 
implications for the alignment of monetary policies across the G7, particularly during financial 
market crises (Antonakakis et al., 2019).  

For the sake of completeness and comparability with the nonparametric causality-in-
quantiles framework, we first conduct several preliminary tests to further strengthen the case 
for our predictive model. Table 2 presents the findings from the linear Granger causality tests 
and tests of nonlinearity. In Panel A, we present the test statistic for the null hypothesis of no 
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Granger causality running from the Gold-to-Platinum price ratio to the bubble indicators listed 
in each column in the top. As evident, the linear tests yield no indication of predictability 
running from LGP to the bubble indicators for the US, barring that of the short-term positive 
LPPLS-CI at the 5% level of significance.  

[INSERT TABLE 2] 
Having observed mostly insignificant evidence of causality based on the linear 

specification, we next examine whether the finding of non-causality might be due to model 
misspecification that assumes a linear predictability relationship. Therefore, in order to explore 
whether the linear model is misspecified, we next test for the presence of nonlinearity in the 
relationship between the six LPPLS-CIs and LGP. In this regard, we use the Brock et al. (1996, 
BDS) test on the residuals from the linear model used in the linear Granger causality test, and 
check whether the null hypothesis of i.i.d. residuals at various dimensions (m) can be rejected 
or not. Panel B presents the results of the BDS nonlinearity tests. As shown in the table, the 
BDS test yields overwhelming evidence of nonlinearity, that is, we reject the null hypothesis 
of linearity (i.i.d. residuals) at the highest level of significance, consistently across all six 
predictive cases considered. In sum, the BDS test confirms that the linear model is indeed 
misspecified due to the existence of uncaptured nonlinearity, and hence, further predictive 
inference must rely on a nonlinear model, which justifies our nonparametric causality-in-
quantiles approach. 

Next, we address the issue of instability in the linear model and potential misspecification 
by examining the presence of possible structural breaks in the relationship between LGP and 
stock market bubbles in the US. For this purpose, we utilize the powerful UDmax and WDmax 
tests multiple structural breaks as proposed by of Bai and Perron (2003) on the equations of the 
linear Granger causality test. Based on the results reported in Panel C of the table, we find that 
there is widespread evidence of regime changes, especially before, during or after the periods 
of major bubbles identified and discussed in Section 3.1. Given that the parameter estimates 
are indeed unstable over the full sample period, we conclude that the linear Granger causality 
results are invalid. To achieve accurate causal analysis in our context, we must rely on an 
econometric model that is inherently time-varying, which we accomplish through our 
quantiles-based nonlinear methodology. 

In light of the presence of nonlinearity and regime changes in the relationship between 
LGP and the six LPPLS-CIs, our linear Granger causality results are clearly unreliable. This 
provides us with a strong statistical motivation to utilize the nonparametric causality-in-



17  

quantiles testing method, which can accommodate such misspecifications. Table 3 reports the 
quantile causality test statistics for causality running from the Gold-to-Platinum price ratio 
(Panel A) and risk aversion (Panel B) to the MS-LPPLS-CIs for a particular quantile listed in 
the first column. Examining the standard normal test statistics, derived from the quantiles-
based results, over the range of 0.10 to 0.90, we can draw several important conclusions. 

[INSERT TABLE 3] 
Unlike the linear Granger causality findings reported in Table 2, the quantiles-based 

model, reported in Panel A, detects strong evidence of predictability from LGP over the entire 
quantile-limit considered on the multi-scale negative and positive bubbles indicators, at the 1% 
level of significance. The only exception is the highest considered quantile of 0.90 under the 
short-term positive LPPLS-CI, where causality is only detected at the 10% level of 
significance.7 This suggests that bubbles are indeed predictable by measures of market 
uncertainty which is an important consideration for the implementation of risk mitigation 
mechanisms by policy makers. These findings also add support to the evidence in Demirer et 
al. (2019) that bubble formation can be predicted via market-based measures of risk and 
sentiment. 

While predictability is generally stronger for negative bubbles than their positive 
counterparts, when we compare the values of the test statistics across the time scales, we find 
that the predictive impact is strongest for the long-term, followed by the medium- and short-
term indicators for negative bubbles. However, in the case of the positive bubbles, causality is 
found to be strongest in the short-run (barring the quantile of 0.90), followed by the medium- 
and long-runs. This means that the Gold-to-Platinum price ratio serves as a more robust 
predictor of deeper downward accelerating price formations followed by a rally, i.e., long- and 
medium-term negative bubbles. At the same time, LGP can also provide early signals of 
possible severe forthcoming crashes from accelerating prices by strongly predicting short-term 
positive bubbles, which tend to lead the medium- and long-run positive LPPLS-CIs as pointed 
out in Figure 2 and discussed in Section 3.1. 

                                                             
7 Recent studies have indicated that diamond, just like gold, performs the dual role of consumption and investment 
goods (see, for example, Caporale et al. (2022), Plastun et al. (2022)). In light of this, we also conducted the 
nonparametric causality-in-quantiles test to predict the MS-LPPLS-CIs with the logarithm of the Diamond-to-
Platinum price ratio over the 1st week of January 2002 till the 2nd week of September 2020 (based on data 
availability, with diamond prices in US dollars obtained from Bloomberg). As can be observed from Table A1 in 
the Appendix, our findings are qualitatively similar to those obtained under LGP and RA (reported in Table 3).  
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As a matter of robustness check, we utilize the measure of risk aversion (RA) of Bekaert 
et al. (2022) as an alternative predictor of bubbles. Bekaert et al. (2022) develop a new measure 
of time-varying risk aversion that ultimately can be calculated from observable financial 
information at the daily frequency. This metric relies on a set of six financial instruments 
namely, the term spread, credit spread, a de-trended dividend yield, realized and risk-neutral 
equity return variance and realized corporate bond return variance. An important feature of this 
measure is that it distinguishes time variation in economic uncertainty (the amount of risk) 
from time variation in risk aversion (the price of risk) and, thus, provides an unbiased 
representation for time-varying risk aversion based on a utility function in the hyperbolic 
absolute risk aversion (HARA) class.8 As seen in Panel B of Table 3, we obtain qualitatively 
similar results, including that of the asymmetric behaviour, as under the LGP. This finding 
confirms the robustness of our results regarding the predictability of bubble formation due to 
measures of market risk or sentiment when an alternative metric of risk in the financial system 
is employed. 

Reverting to the utilization of the Gold-to-Platinum price ratio, we present in Table 4 the 
quantile causality test statistics for causality running from LGP to the MS-LPPLS-CIs for a 
particular quantile listed in the first column. Panels A through F report the findings for the 
bubble indicators for each G7 economy and Panel G reports the same for the factors derived 
from the DFM applied to the G7 MS-LPPLS-CIs. We find that the predictability patterns across 
the six bubbles indicators of the remaining six of the G7 bloc remain quite consistent and 
significant, along with country-specific asymmetries, at least at the 5% level of significance. 
Specifically speaking, only 9 cases (at the highest quantile of 0.90) out of the possible 324 
remain not predictable by the global risk metric, while we observe strong evidence of bubble 
predictability in all other cases. Accordingly, the evidence suggests that the Gold-to-Platinum 
price ratio can not only predict bubble dynamics for the US market, but also that of Canada, 
France, Germany, Italy, Japan and the UK.9 

Given the evidence that LGP has a strong causal influence on the stock market bubbles of 
all G7 countries individually, we next examine predictability patterns based on the six extracted 
                                                             
8 The daily index, which we average over weeks, is available for download from: https://www.nancyxu.net/risk-
aversion-index. 
9 Though the focus is on developed equity markets, we also conducted a similar analysis on the bubble indicators 
of five important emerging countries namely, Brazil, China, India, Russia and South Africa, i.e., the BRICS bloc, 
over the 2nd week of February 1999 to the 2nd week of September 2020, with the MS-LPPLS-CIs plotted in Figure 
A2 in the Appendix. As reported in Panels A through E in Table A2 in the Appendix, LGP also contains very 
strong predictive ability, barring 9 (at the upper most quantile of 0.90) of the possible 270 cases, for the six LPPLS-
CIs of the 5 BRICS stock markets. 
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factors from the DFM as discussed earlier. Examining the results reported in Panel G, not 
surprisingly, the factors are found to be strongly predictable via LGP at the 1% level of 
significance, consistently over the entire coverage of their respective conditional distributions, 
i.e., quantiles of 0.10 to 0.90.10 As the factors capture the dynamics behind the common 
movements of bubbles of the G7, we can derive that, in general, LGP have stronger predictive 
impact on positive long-term bubbles, compared to the medium- and short-runs, and hence can 
predict the synchronized common equity market crashes that are likely to follow after 
overheating of markets. The conclusions are similar when it comes to negative bubbles, 
however with some exceptions around the median, i.e., barring relatively normal-sized 
commoving less severe downturns before recovery.  

[INSERT TABLE 4] 
Overall, our analysis shows that the link between stock market bubbles in the US and LGP 

is non-linear and regime dependent, resulting in very weak evidence of causality if tested within 
a linear causality framework. However, by using a non-parametric econometric framework that 
accounts for the nonlinear and state-specific features embedded in the data, we find strong 
evidence of predictability stemming from LGP, with certain degree of asymmetry in terms of 
the strength of predictability across the time-scale and sign of the bubbles (and also to some 
extent dependent on their size). The results also carry over to the rest of the G7 bloc (with 
country-specific differences), and hence, the synchronization of the bubbles in these 
economies. Clearly, our findings provide a valuable opening for market regulators as the results 
show that the readily available metric of market risk based on the gold to platinum prices can 
be used to model and monitor the occurrence of bubble patterns in financial markets as well as 
the connectedness of these bubbles across the global markets. This evidence indicates that the 
accuracy of forecasting models for boom and bust market conditions can be improved by 
incorporating this risk metric which is available at both the high and low frequencies in various 
applications ranging from market monitoring mechanisms to the valuation of derivatives and 
the computation of downside risk proxies for the financial system.  
 
                                                             
10 In light of the MS-LPPLS-CIs picking up bubble episodes for the BRICS that align with those of the G7 during 
the common period of 1999-2020 (see Figures 1 and A2 in the Appendix, with the BGGVAR results available 
upon request from the authors), in Panel F of Table A2 in the Appendix, we report the nonparametric causality-
in-quantiles test results from LGP on to the six common factors extracted from the DFM applied to the 12 countries 
for each of the six bubbles indicators. Again, as with the case for the G7, LGP is able to explain the common 
movement of bubbles across the G7 and BRICS over the entire quantile range of 0.10 to 0.90 at the 1% level of 
significance. This result is not surprising in light of the evidence provided by Demirer et al. (2018) of the role of 
global risk aversion in explaining the comovements of emerging markets with respect to the US.  
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4. Conclusion 
While a large literature has been devoted to modeling and detecting bubbles in financial 

markets, the predictability of bubbles and the connectedness of bubbles across markets is 
relatively understudied. The primary objective of this paper is to analyse the predictive impact 
of a readily available metric of risk namely, the gold to platinum price ratio on equity market 
bubbles in the US and the rest of G7 bloc. To this end, we first employ the popularly utilized 
Log-Periodic Power Law Singularity (LPPLS) model to detect positive and negative bubbles 
via the Multi-Scale LPPLS Confidence Indicator (MS-LPPLS-CI) approach. Our findings 
reveal the ability of these indicators to detect major crashes and rallies, suggesting that the 
shorter time scale indicators are best suited for detecting smaller crashes or rallies, while the 
medium and longer time scale indicators are best suited for detecting larger crashes or rallies. 
Further extending our analysis to a predictive context, we utilize a nonparametric causality-in-
quantiles test to assess the causal linkages between the gold to platinum price ratio (LGP) and 
the estimated bubble indicators. Our results demonstrate strong evidence of predictability for 
the conditional distributions of the LPPLS-CIs, particularly for the occurrence of short-term 
positive and long-term negative bubble. While the predictive power of LGP over bubbles 
extends to the six other developed stock markets in the G7 bloc, our findings also yield 
evidence of synchronized boom and bust cycles across equity markets in the G7 bloc and that 
LGP can also predict the common component of bubbles based on the common factors 
extracted from the bubble indicators for the G7.    

The evidence of predictability in bubble dynamics across the different markets examined 
should be of immense value to investors in designing state-specific portfolios in country 
diversification strategies (van Eyden et al., 2023). Furthermore, as bubbles are associated with 
real economic activity, carrying significant welfare implications, our results are of paramount 
importance to policymakers in devising appropriate policy responses to mitigate the 
destabilizing effects of bubbles and subsequent crashes. At the same time, given that the 
common component of bubbles is predictable by LGP, we also provide a tentative argument in 
favour of monetary policy synchronization across the G7 to deal with the potentially 
destabilizing effects of bubbles (Caraiani et al., 2023; Gupta et al., 2023), despite the evidence 
of heterogeneous country-level responses of the LPPLS-CIs to global risk. It must, however, 
be noted that while we do find strong evidence of predictability from the gold-to-platinum 
price-ratio over the stock market bubbles of the G7, the stronger effects observed at lower 
conditional quantiles of the bubble indicators may indicate that other factors contribute to the 
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formation of bubbles that we cannot control for in our study due to the bivariate structure of 
our econometric model. In this context, for future work, it would be worthwhile to explore the 
role of conventional and unconventional monetary policy shocks on the conditional distribution 
of bubbles, contingent on the state of the global risk factor as captured by LGP (see, for 
example, the discussions in Çepni and Gupta, 2021l and Çepni et al., 2021).  
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Figure 1: Natural Logarithm of Gold-to-Platinum Price Ratio (LGP) 

 
Note: The figure shows the natural logarithm of the ratio of gold to platinum prices (LGP) on a weekly 
frequency for the period from January 1973 to the 2nd week of (13th) September, 2020. 
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Figure 2: Multi-Scale Log-Periodic Power Law Singularity Confidence Indicators (MS-LPPLS-CIs) of the G7 Countries. 
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Figure 2 (continued) 
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Figure 3: Spillover results from the Bayesian Gaussian Graphical Vector Autoregressive 
Models (BGGVARs) of the MS-LPPLS-CIs for the G7. 

Panel A: Positive Short-Term 

 Panel B: Positive Medium-Term 

 Panel C: Positive Long-Term 
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Figure 3 continued. Panel D: Negative Short-Term 

 Panel E: Negative Medium-Term 

 Panel F: Negative Long-Term 

 Note: Cnd: Canada; Frn: France; Grm: Germany; Itl: Italy; Jpn: Japan; UK: The United Kingdom; USA: The 
United States of America. Lighter (Darker) Green lines indicate lower (higher) positive correlations; Lighter 
(Darker) Red lines indicate lower (higher) negative correlations. 
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Table 1: Summary Statistics for the US Data 
 Positive bubbles Negative bubbles  

Statistic Short-Term Med.-Term Long-Term Short-Term Med.-Term Long-Term LGP 
Mean 0.013 0.020 0.041 0.005 0.006 0.013 -0.171 
Median 0.000 0.000 0.000 0.000 0.000 0.000 -0.119 
Maximum 0.571 0.635 0.806 0.480 0.443 0.750 0.882 
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 -0.870 
Std. Dev. 0.048 0.059 0.102 0.028 0.028 0.074 0.314 
Skewness 5.388 5.278 3.289 9.814 8.073 7.520 0.006 
Kurtosis 38.416 38.352 14.455 126.815 89.655 62.689 3.076 
Jarque-Bera 142119.5*** 141164.2*** 18096.41*** 1629808*** 805790.3*** 392941.5*** 0.617 
Observations 2489 2489 2489 2489 2489 2489 2489 
Note: Std. Dev. stands for standard deviation; the null hypotheses of the Jarque-Bera test corresponds to the null 
of normality; LGP is the natural log of Gold-Platinum price ratio. *** indicates rejection of the null hypothesis at 
a 1% level of significance.  
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Table 2: Linear Granger Causality and Nonlinearity Tests for the US 
 Positive bubbles Negative bubbles 
 Short-Term Med.-Term Long-Term Short-Term Med.-Term Long-Term 
 Panel A: Linear Granger Causality Tests 

LGP 5.503** 2.121  1.093  2.498  1.076  0.065  
 Panel B: Brock et al. (1996) BDS test of non-linearity 

m=2 29.703*** 29.079*** 32.436*** 59.805*** 49.870*** 63.690*** 
m=3 31.440*** 33.652*** 38.494*** 61.972*** 53.167*** 67.288*** 
m=4 32.907*** 36.674*** 43.049*** 64.744*** 56.123*** 72.158*** 
m=5 35.116*** 40.416*** 47.743*** 69.138*** 60.321*** 79.199*** 
m=6 37.566*** 44.596*** 53.236*** 74.951*** 66.237*** 88.678*** 

 Panel C: Break Dates 

 2/11/1986 
9/02/1980, 
5/09/1989, 
4/01/1997, 
5/25/2004, 
4/03/2012 

10/13/1987, 
8/30/1994, 
6/01/1999, 
10/31/2006, 
7/08/2014 

3/23/1982, 
4/07/1992, 
7/09/2002, 
2/11/2003, 
9/01/2009 

5/20/1980, 
12/15/1987, 
2/07/1995, 
10/29/2002, 
10/18/2011 

3/04/1980, 
1/05/1988, 
8/08/1995, 
10/22/2002, 
12/15/2009 

Note: In Panel A, the entries correspond to χ2(1) test statistic of the null hypothesis of no Granger causality 
running from the gold to platinum ratio (LGP) to the bubble indicators listed in each column in the top. ** indicates 
rejection of the null hypothesis at a 5% level of significance. In Panel B, the entries correspond to the z-statistic 
of the Brock et al. (1996) BDS test of non-linearity with the null of i.i.d. residuals across various dimensions (m). 
The test is applied to the residuals recovered from the MS-LPPLS-CI equation with one lag each of the bubble 
indicators listed in each column and LGP. *** indicates rejection of the null hypothesis at 1% level of significance. 
In Panel C, the entries correspond to the dates of structural breaks based on the Bai and Perron (2003) the test 
applied to the MS-LPPLS-CI equation with one lag each of the bubble indicators and LGP.  
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Table 3: Causality-in-Quantiles Test Results for the US. 
 Positive bubbles Negative bubbles 
 Short-Term Med.-Term Long-Term Short-Term Med.-Term Long-Term 

Quantile Panel A: Causality from Gold to Platinum ratio to bubble indicators 
0.10 3598.178*** 1572.357*** 930.690*** 2373.595*** 3741.828*** 3917.066*** 
0.20 2056.986*** 866.102*** 524.683*** 1350.177*** 2147.639*** 2324.079*** 
0.30 1317.134*** 540.098*** 333.199*** 877.434*** 1393.105*** 1547.770*** 
0.40 855.884*** 345.303*** 215.176*** 587.508*** 925.306*** 1035.379*** 
0.50 537.853*** 210.668*** 135.879*** 388.022*** 606.670*** 691.676*** 
0.60 311.388*** 116.821*** 81.230*** 243.378*** 375.271*** 433.356*** 
0.70 151.882*** 55.239*** 42.387*** 136.939*** 199.706*** 241.846*** 
0.80 48.819*** 16.057*** 15.333*** 60.577*** 83.414*** 104.573*** 
0.90 1.684* 2.616*** 3.115*** 12.045*** 13.149*** 23.000*** 

Quantile Panel B: Causality from Risk Aversion ratio to bubble indicators 
0.10 2497.302*** 1921.564*** 1726.158*** 3060.507*** 2937.171*** 3103.233*** 
0.20 1467.991*** 1086.085*** 995.513*** 1798.578*** 1717.865*** 1827.015*** 
0.30 925.752*** 682.312*** 638.115*** 1188.045*** 1122.589*** 1210.217*** 
0.40 610.687*** 436.605*** 414.084*** 803.399*** 748.887*** 821.887*** 
0.50 381.619*** 422.316*** 260.159*** 532.879*** 490.742*** 550.385*** 
0.60 218.932*** 141.959*** 152.721*** 336.645*** 308.434*** 352.343*** 
0.70 104.549*** 63.641*** 76.051*** 190.543*** 170.823*** 204.400*** 
0.80 33.873*** 15.423*** 24.922*** 85.445*** 77.963*** 97.543*** 
0.90 0.568 1.966** 5.981*** 18.505*** 15.645*** 25.314*** 

Note: The table reports the quantile causality test statistics for causality running from the gold to platinum price 
ratio (Panel A) and risk aversion (Panel B) to the MS-LPPLS-CIs for a particular quantile listed in the first column. 
*** and * indicate rejection of the null hypothesis of no Granger causality at the 1% and 10% levels of significance 
respectively (critical values of 2.575 and 1.645). 
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Table 4: Causality-in-Quantiles Test Results for the Remaining G7 Countries. 
 Positive bubbles Negative bubbles  Short-Term Med.-Term Long-Term Short-Term Med.-Term Long-Term 

Quantile Panel A: Canada 
0.1 1749.396*** 2795.763*** 1672.209*** 3920.845*** 3618.584*** 3882.465*** 
0.2 985.644*** 1564.432*** 949.203*** 2265.182*** 2066.876*** 2311.245*** 
0.3 632.441*** 987.150*** 605.843*** 1476.550*** 1332.426*** 1528.235*** 
0.4 416.144*** 636.396*** 396.602*** 985.328*** 883.295*** 1026.098*** 
0.5 268.001*** 397.890*** 251.811*** 644.676*** 578.808*** 676.708*** 
0.6 161.573*** 218.149*** 154.251*** 397.199*** 347.794*** 425.370*** 
0.7 84.673*** 97.996*** 80.629*** 215.993*** 181.152*** 238.757*** 
0.8 31.733*** 30.371*** 29.109*** 88.497*** 74.418*** 106.765*** 
0.9 2.835*** 0.476 3.362*** 13.726*** 9.820*** 22.706***  Panel B: France 
0.1 3663.161*** 2195.522*** 2520.415*** 4112.495*** 2440.374*** 2211.884*** 
0.2 2096.065*** 1215.179*** 1460.261*** 2393.519*** 1385.056*** 1260.551*** 
0.3 1337.887*** 766.728*** 948.153*** 1564.446*** 897.814*** 824.607*** 
0.4 863.363*** 491.242*** 602.753*** 1044.078*** 599.371*** 554.563*** 
0.5 544.901*** 301.866*** 369.633*** 681.600*** 394.445*** 368.24*** 
0.6 323.092*** 170.000*** 207.634*** 417.810*** 245.713*** 233.175*** 
0.7 164.779*** 79.301*** 99.070*** 224.998*** 137.137*** 133.83*** 
0.8 60.428*** 24.721*** 25.147*** 92.740*** 59.813*** 63.204*** 
0.9 4.228*** 0.945 0.335 16.156*** 11.056*** 15.415***  Panel C: Germany 
0.1 2185.375*** 2714.982*** 2840.062*** 599.732*** 1643.077*** 3849.152*** 
0.2 1228.579*** 1534.178*** 1647.197*** 339.768*** 933.448*** 2278.464*** 
0.3 786.794*** 999.170*** 1094.682*** 220.677*** 605.777*** 1503.798*** 
0.4 516.595*** 646.776*** 720.507*** 147.988*** 404.920*** 1010.292*** 
0.5 331.761*** 390.885*** 447.925*** 98.124*** 266.823*** 661.674*** 
0.6 199.172*** 215.039*** 264.854*** 62.027*** 166.804*** 411.573*** 
0.7 103.569*** 94.323*** 134.419*** 35.467*** 93.589*** 234.005*** 
0.8 38.044*** 22.126*** 41.853*** 16.375*** 41.018*** 100.309*** 
0.9 2.917*** 0.129 0.316 4.152*** 8.019*** 18.771***  Panel D: Italy 
0.1 3795.257*** 3170.625*** 2716.214*** 3929.738*** 3549.121*** 3353.286*** 
0.2 2183.524*** 1835.539*** 1585.431*** 2273.877*** 2038.972*** 1961.600*** 
0.3 1403.632*** 1184.583*** 1018.222*** 1477.107*** 1326.246*** 1294.516*** 
0.4 914.751*** 779.118*** 666.968*** 978.294*** 875.444*** 867.615*** 
0.5 577.383*** 493.402*** 424.787*** 631.946*** 570.577*** 560.597*** 
0.6 345.023*** 288.255*** 255.411*** 381.143*** 342.722*** 337.982*** 
0.7 180.002*** 145.202*** 137.413*** 200.069*** 182.403*** 181.823*** 
0.8 66.604*** 46.880*** 50.225*** 77.528*** 71.028*** 69.445*** 
0.9 5.875*** 1.158 3.852*** 8.870*** 7.596*** 7.472*** 
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Table 4 (Continued) 
Panel E: Japan 

0.1 1828.492*** 2833.291*** 2574.343*** 3986.522*** 3383.210*** 3140.639*** 
0.2 1029.709*** 1621.235*** 1491.503*** 2309.169*** 1918.305*** 1804.947*** 
0.3 660.563*** 1078.545*** 947.964*** 1506.216*** 1240.307*** 1176.739*** 
0.4 434.583*** 709.528*** 609.711*** 1004.646*** 813.528*** 783.129*** 
0.5 279.846*** 435.279*** 373.207*** 656.291*** 513.055*** 512.183*** 
0.6 168.703*** 243.800*** 216.896*** 403.135*** 308.315*** 318.194*** 
0.7 88.430*** 121.407*** 110.070*** 218.192*** 151.844*** 180.751*** 
0.8 33.149*** 34.898*** 33.717*** 89.342*** 56.418*** 78.151*** 
0.9 2.926*** 0.111 2.640*** 13.594*** 3.616*** 14.007*** 

Panel F: UK 
0.1 3813.723*** 2776.656*** 2399.110*** 2127.266*** 3584.691*** 3781.795*** 
0.2 2194.842*** 1546.219*** 1460.148*** 1211.981*** 2056.473*** 2229.995*** 
0.3 1411.759*** 990.036*** 933.293*** 789.151*** 1338.944*** 1470.986*** 
0.4 920.915*** 641.985*** 598.732*** 529.738*** 895.910*** 984.519*** 
0.5 581.104*** 389.647*** 366.592*** 351.130*** 587.098*** 644.617*** 
0.6 338.868*** 215.791*** 206.253*** 221.483*** 360.264*** 409.096*** 
0.7 172.541*** 97.601*** 94.544*** 125.889*** 198.971*** 226.496*** 
0.8 59.191*** 24.151*** 24.480*** 57.007*** 84.343*** 96.342*** 
0.9 3.857*** 0.007 0.001 12.598*** 14.197*** 22.220*** 

Panel G: MS-LPPLS-CI Factors of the G7 
0.1 5.355*** 4.763*** 8.954*** 6.050*** 6.635*** 9.645*** 
0.2 7.137*** 5.916*** 12.452*** 7.313*** 8.295*** 8.817*** 
0.3 6.408*** 7.285*** 15.294*** 8.885*** 8.485*** 6.137*** 
0.4 6.503*** 5.081*** 16.184*** 7.833*** 7.653*** 4.363*** 
0.5 6.846*** 4.080*** 16.528*** 6.078*** 7.312*** 4.704*** 
0.6 6.169*** 3.976*** 16.481*** 5.187*** 6.660*** 5.577*** 
0.7 5.863*** 4.695*** 15.573*** 5.438*** 6.536*** 6.752*** 
0.8 5.444*** 5.226*** 12.914*** 5.187*** 6.774*** 7.338*** 
0.9 4.226*** 3.885*** 9.089*** 4.292*** 5.191*** 6.565*** 

Note: The table reports the quantile causality test statistics for causality running from the gold to platinum price 
ratio (LGP) to the MS-LPPLS-CIs for a particular quantile listed in the first column. Panels A through F report 
the findings for the bubble indicators for each G7 economy and Panel G reports the same for the factors derived 
from the DFM applied to the G7 MS-LPPLS-CIs. *** and * indicate rejection of the null hypothesis of no Granger 
causality at the 1% and 10% levels of significance respectively (critical values of 2.575 and 1.645). 
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APPENDIX 
Figure A1: Quantiles-on-Quantiles Impact (Slope) of LGP on the MS-LPPLS-CIs for the US. 

Positive Bubbles 
Short-Term Med.-Term Long-Term 

   Negative Bubbles 

   Note: The figures plot the quantile-on-quantile slope parameters where the dependent variable is the MS-LPPLS-CIs and the independent variable is the Gold to Platinum price 
ratio (LGP).  
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Figure A2: Multi-Scale Log-Periodic Power Law Singularity Confidence Indicators (MS-LPPLS-CIs) of the BRICS Countries. 
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Table A1: Diamond to Platinum price ratio and bubbles. 
 Positive bubbles Negative bubbles 
 Short-Term Med.-Term Long-Term Short-Term Med.-Term Long-Term 

Quantile Causality from Diamond to Platinum ratio to bubble indicators 
0.10 1369.604*** 795.227*** 961.955*** 1234.818*** 863.111*** 693.244*** 
0.20 778.262*** 431.515*** 571.099*** 705.753*** 490.714*** 395.354*** 
0.30 492.134*** 263.621*** 359.412*** 460.649*** 319.714*** 258.820*** 
0.40 313.410*** 167.316*** 226.370*** 310.104*** 215.149*** 175.387*** 
0.50 197.064*** 97.619*** 135.645*** 206.348*** 143.265*** 117.979*** 
0.60 113.647*** 49.994*** 75.977*** 130.927*** 91.087*** 76.334*** 
0.70 54.486*** 21.572*** 34.357*** 75.175*** 52.528*** 45.261*** 
0.80 18.873*** 6.258*** 8.846*** 34.797*** 24.524*** 22.527*** 
0.90 0.581 2.951*** 1.012 8.394*** 6.150*** 6.986*** 

Note: The table reports the quantile causality test statistics for causality running from the diamond to platinum price ratio to 
the MS-LPPLS-CIs for the U.S. stock market for a particular quantile listed in the first column. *** indicate rejection of the 
null hypothesis of no Granger causality at the 1% level of significance (critical value of 2.575). 
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Table A2: Causality-in-Quantiles Test Results for the BRICS. 
 Positive bubbles Negative bubbles  Short-Term Med.-Term Long-Term Short-Term Med.-Term Long-Term 

Quantile Panel A: Brazil 
0.1 1226.221*** 1121.471*** 918.602*** 1789.527*** 1681.006*** 860.709*** 
0.2 689.844*** 627.201*** 521.376*** 1035.089*** 965.592*** 490.103*** 
0.3 441.975*** 406.720*** 335.504*** 670.244*** 624.058*** 318.772*** 
0.4 290.332*** 261.225*** 221.441*** 441.284*** 410.967*** 213.109*** 
0.5 186.576*** 161.994*** 144.311*** 283.502*** 267.340*** 140.328*** 
0.6 112.117*** 92.268*** 90.382*** 172.165*** 159.735*** 87.747*** 
0.7 58.430*** 46.069*** 50.788*** 92.535*** 82.150*** 49.280*** 
0.8 21.777*** 13.781*** 22.414*** 35.907*** 34.751*** 22.966*** 
0.9 1.909* 0.484 5.959*** 5.576*** 4.691*** 6.244***  Panel B: China 
0.1 843.300*** 771.534*** 1556.874*** 1753.979*** 1550.746*** 1309.085*** 
0.2 476.804*** 434.436*** 915.935*** 1011.985*** 881.909*** 745.281*** 
0.3 307.171*** 278.703*** 594.560*** 653.021*** 563.594*** 474.116*** 
0.4 203.215*** 183.550*** 401.634*** 427.855*** 372.420*** 311.865*** 
0.5 131.916*** 118.329*** 256.708*** 271.736*** 239.385*** 190.711*** 
0.6 80.555*** 72.217*** 154.403*** 159.315*** 139.262*** 109.224*** 
0.7 43.231*** 38.703*** 84.712*** 81.762*** 68.653*** 57.171*** 
0.8 17.215*** 15.396*** 36.023*** 30.955*** 23.146*** 19.948*** 
0.9 2.219** 2.187** 6.626*** 3.286*** 0.924 0.303  Panel C: India 
0.1 1312.056*** 1069.461*** 1246.480*** 1165.953*** 1013.816*** 1836.750*** 
0.2 736.882*** 589.210*** 710.988*** 664.037*** 573.954*** 1087.162*** 
0.3 470.073*** 370.422*** 456.322*** 431.858*** 370.114*** 717.425*** 
0.4 306.717*** 240.378*** 293.393*** 289.305*** 245.033*** 489.886*** 
0.5 195.073*** 145.802*** 180.472*** 191.149*** 159.122*** 323.468*** 
0.6 115.228*** 79.521*** 101.803*** 119.955*** 97.300*** 204.135*** 
0.7 58.086*** 40.672*** 50.438*** 67.567*** 52.627*** 114.785*** 
0.8 20.035*** 11.586*** 15.232*** 30.014*** 21.773*** 51.534*** 
0.9 1.315 0.837 1.319 6.220*** 3.072*** 11.687***  Panel D: Russia 
0.1 1703.913*** 1512.46*** 1385.638*** 882.256*** 1102.025*** 1667.775*** 
0.2 979.392*** 856.119*** 792.838*** 501.968*** 621.821*** 977.267*** 
0.3 633.686*** 545.145*** 512.356*** 325.949*** 399.571*** 653.100*** 
0.4 418.463*** 357.389*** 340.849*** 217.937*** 263.375*** 433.793*** 
0.5 269.609*** 230.445*** 225.110*** 143.631*** 170.020*** 282.310*** 
0.6 162.094*** 140.172*** 145.843*** 89.801*** 102.997*** 170.291*** 
0.7 84.813*** 77.587*** 83.239*** 50.269*** 54.513*** 91.824*** 
0.8 32.277*** 27.044*** 36.274*** 22.006*** 22.146*** 38.814*** 
0.9 3.651*** 1.832* 7.073*** 4.275*** 2.826*** 5.794*** 

 
  



40  

Table A2 (Continued) 
 Panel E: South Africa 

0.1 1095.911*** 1175.929*** 1225.503*** 1792.013*** 1504.051*** 1032.865*** 
0.2 614.968*** 650.968*** 746.588*** 1035.224*** 859.879*** 592.108*** 
0.3 392.711*** 410.822*** 473.612*** 677.667*** 560.037*** 387.720*** 
0.4 256.731*** 271.677*** 305.502*** 455.804*** 375.498*** 262.000*** 
0.5 163.773*** 166.398*** 185.522*** 302.050*** 248.721*** 175.207*** 
0.6 97.247*** 91.839*** 105.295*** 190.042*** 156.204*** 111.988*** 
0.7 49.510*** 42.351*** 55.880*** 107.357*** 88.693*** 65.393*** 
0.8 17.263*** 13.293*** 17.381*** 47.897*** 40.937*** 31.144*** 
0.9 0.925 0.836 0.283 10.123*** 9.468*** 8.430***  Panel F: MS-LPPLS-CI Factors of the G7 and the BRICS 
0.1 5.200*** 4.602*** 4.461*** 4.316*** 8.160*** 7.200*** 
0.2 6.705*** 6.960*** 4.994*** 5.649*** 10.134*** 9.521*** 
0.3 7.277*** 7.253*** 5.307*** 6.499*** 10.529*** 10.900*** 
0.4 7.946*** 6.921*** 4.836*** 7.405*** 9.949*** 11.643*** 
0.5 8.235*** 6.453*** 4.799*** 7.525*** 9.296*** 11.869*** 
0.6 7.860*** 6.703*** 5.418*** 7.794*** 8.531*** 11.617*** 
0.7 7.439*** 6.535*** 5.565*** 7.358*** 8.211*** 10.863*** 
0.8 6.761*** 5.653*** 5.483*** 6.308*** 7.679*** 9.457*** 
0.9 4.957*** 4.362*** 3.701*** 4.425*** 5.617*** 7.032*** 

Note: The table reports the quantile causality test statistics for causality running from the gold to platinum price ratio (LGP) 
to the MS-LPPLS-CIs for a particular quantile listed in the first column. Panels A through E report the findings for the 
bubble indicators for each BRICS economy and Panel F reports the same for the factors derived from the DFM applied to 
the G7 and BRICS MS-LPPLS-CIs.  ***, ** and * indicate rejection of the null hypothesis of no Granger causality at the 1%, 
5% and 10% levels of significance respectively (critical values of 2.575, 1.96, 1.645 for the standard normal test statistic). 


