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ABSTRACT

The present research is aimed at investigating the possibility of predicting average monthly electricity prices and presenting a model for predicting 
electricity price in Iranian market considering unique characteristics of electricity as a commodity. For this purpose, time series data on average 
monthly electricity price during 2006–2015 was used. Firstly, unit root test was used to investigate stationarity of time series of electricity price. Then, 
using Gómes-Maravall model, an ARIMA model was estimated for predicating electricity price in Iranian market using energy purchase data from 
a hydropower plant. The model was run utilizing SEATS (Signal Extraction in ARIMA Time Series) and TARMO (“Time Series Regression with 
ARIMA Noise, Missing Observations, and Outliers”) programs. For this purpose, energy purchase data from three Karun river hydropower plants 
(Khuzestan Province, Iran) was used.
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1. INTRODUCTION

In many countries, structure of power industry is evolving from an 
exclusive environment to a competitive one. However, different 
countries are experiencing different models of restructuring of 
power industry toward privatization of this industry and making it 
competitive. Despite the differences between electrical energy and 
other commodities, which root in unique characteristics of this type 
of energy such as inability to store it in large amounts, the main 
idea behind the process of making competitive the power industry 
is to consider the electric energy as a commodity which can be 
traded via bilateral or multilateral agreements or electricity market.

With the restructuring of electricity market from a governmental 
monopoly to competitive market where average price is 
determined by market forces, modeling and prediction of price 
has been accompanied with uncertainty and become particularly 
important for stakeholders of electricity market. In order to 

perform modeling and prediction in such a competitive market, 
one should consider characteristics of electricity as a commodity, 
such as storage limitations, low elasticity, seasonal nature of supply 
and demand, and the necessity of a continuous balance between 
supply and demand.

Today, electricity market exhibits further harmony with other 
markets such as ancillary services market, thereby remarkably 
complicating decision-making toward enhanced profitability for 
market’s stakeholders. Success in the novel competitive electricity 
market requires possessing an acceptable deal of skill in estimation 
based on scientific criteria. Players of energy market are uncertain 
about the profit to be gained from long-term energy delivery 
contracts in the future, because there are chances that production, 
demand, and prices change compared to the contract requirements; 
as such, energy suppliers and consumers may act better should they 
perform more accurate predictions. With increasing the demand 
for electricity, the motivation toward optimized use of resources 
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and economic competitions lead companies and economic firms 
toward investing on and participation in electricity industry. In 
a competitive electricity system, customers are free to select 
sellers. Accordingly, more customers can be attracted by providing 
better services and cheaper energy, bringing about more profits 
for energy producers and sellers while presenting more interests 
to the customers. Energy sellers or suppliers are representatives 
who sell energy to customers; they may not be original producers, 
but rather have bought shares of plant productions. In such a 
case, prediction of electricity prices offered by electricity market 
for purchasing the electricity generated by plants or supplied 
by energy suppliers become very important. Meanwhile, being 
engaged with production limitations in terms of water input and 
seasonal changes, hydropower plants consider predicting trend of 
prices in longer runs.

In order to predict and model the behavior of electricity prices 
in short- and mid-term using time series data on electricity 
prices and considering particular characteristics of electricity, 
numerous econometric tools and artificial intelligence-based 
methods (e.g. neural networks) have been adopted. In most of 
modeling practices, various possible methods have been used for 
estimating the models followed by comparing the methods based 
on statistics indicating the power of predictions. In the present 
research, however, Box-Jenkins and Gómes-Maravall model are 
investigated and compared using seasonal data.

Electricity price follows a seasonal pattern, because the demand 
for electricity depends on the level of economic activity in 
different days, weeks, and months in a year and also on weather 
conditions. When the demand for electricity decreases, producers 
tend to use the units with minimal final production cost. During 
summer or peak hours, however, the units of higher final cost are 
also brought in service. Prices tend to move along an average 
price determined by the competitive market forces. In electricity 
market, the production unit with the lowest efficiency will be the 
last unit to respond to the demand for electricity. Moreover, as an 
effective factor in determining prices, air temperature follows a 
periodic pattern which returns to the average price. This pattern 
is commonly used to explain the autocorrelation of electricity 
price time series. As such, some sort of mean reversion model is 
expected for electricity prices.

There are limiting values in electricity price time series. The 
solution which makes the model able to predict these data is to 
include the variable of time scattering variable into the mean 
reversion model. These models can further take into account 
intense fluctuations in the values of variables, making them 
suitable for modeling electricity price data which can be influenced 
by network interruptions, meteorological factors, sudden rise of 
demand, and production fluctuations. Fluctuations in electricity 
prices are commonly not stable, so that the prices reverse to the 
mean rapidly. ARIMA and seasonal ARIMA models introduce 
effect of the information received from common and uncommon 
states into the model. Some of the received information are of 
the type of normal events and result in smooth changes in prices; 
these changes are explained by the mean reversion model. Some 
other received information is uncommon and lead to fluctuations 

in prices. These models express market prices as a function of 
preceding prices and previous error terms.

2. RESEARCH BACKGROUND

Analysis of seasonal changes in economic time series has a 
background almost identical to that of the theory of macro-
economics. However, despite such a great deal of background, 
only little consensus can be seen in empirical research on the way 
to deal with seasonal nature of fluctuations in economic variables. 
Considering the studies performed so far, advances have been 
achieved in reducing electricity price prediction error. In the 
following, some of the most important studies on price predication 
time series are briefly reviewed.

Samer et al. (2001) predicted demand for electricity using single-
variable ARIMA models. In this paper, once finished with making 
the data reliable, the demand for electricity was predicted using 
different ARIMA models such as MA and AR at various orders. 
Finally, AR(1) model was selected as the best model for this 
purpose.

Darbellay and Marek (2000) predicted short-term demand for 
electricity in Czech Republic. In this paper, the demand was firstly 
predicted using a nonlinear model (artificial neural networks), 
followed by predicting the same demand using a linear model 
(ARIMA). It was finally concluded that, short-term demand for 
electricity follows a linear model, so that the artificial neural 
network may not be regarded as a better model for predicating 
the demand for electricity.

Darbellay and Slama (2000) presented a combination of artificial 
neural network and ARIMA as an optimum solution for predicting 
time series, and claimed that, the combination of artificial neural 
network model (as a nonlinear model) and ARIMA (as a linear 
model) may perform better than either of the models alone when 
it comes to the prediction of time series. Finally, they proved their 
hypothesis by adopting several experimental datasets.

The method was originally devised for seasonal adjustment of 
economic time series (i.e., removal of the seasonal signal), and 
the basic references are Cleveland and Tiao (1976), Box et al. 
(1978), Burman (1980), Hillmer and Tiao (1982), Bell and Hillmer 
(1984), Maravall and Pierce (1987). These approaches are closely 
related to each other, and to the one followed in this program. 
In fact, as already mentioned, Seats developed from a program 
built by Burman for seasonal adjustment at the Bank of England 
(1982 version).

Some researchers have been using neural networks, time series 
(ARMA models) or a combination of both to forecast electricity 
prices in electricity market. The following researchers can be 
mentioned: Areekul et al. (2010), Bowerman and Richard (1987), 
Nogales et al. (2002), Senjyu (2010), Sun and Meng (2006), Tiao 
and Tasay (1983), Voronin and Partanen (2013), Zhang (2003). 
Gómez and Maravall (1994), Gómez (1998), estimated and 
interpolated nonstationary series with the Kalman filter.
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3. THEORETICAL FOUNDATIONS AND 
PRICING IN COMPETITIVE ELECTRICITY 

MARKET

There are two distinctive approaches in electricity market: (1) 
Electricity trading via optional electricity exchanges (e.g. New 
Zeeland market) and forced electricity exchange (e.g. UK 
and Australia). The main advantage of the forced market is 
transparency across the market which is practiced to confine 
market power of giant producers.

In a governmental monopoly, electricity prices are set upon 
governmental orders and are functions of supply costs as well 
as industrial and social policies adopted by governments. For 
most part, these prices remain either unchanged or change very 
slightly and predictably in mid and short runs. Following the 
restructuring of electricity market in many countries, electricity 
price is determined in competitive market and under the effect of 
market forces via interaction of complicated electricity supply and 
demand functions. Producers and purchasers compete for trading 
the produced and needed electricity in the market, offering their 
proposed prices for different hours to the market operator. Demand 
for electricity depends on the level of economic activities and 
weather conditions.

Trading methods in an electricity market include: Electricity 
exchange, bilateral deals, and multilateral deals. In an electricity 
exchange, all of the sellers and buyers are required to participate 
in the market and present their purchase/sell offerings. This entity 
matches cumulative supply and demand curves to determine an 
equilibrium point for the market. Similar to any other exchange, sales 
can be either one- way or two-way. In a one-way sale, sellers offer 
their production level and prices (supply curve), while consumers 
indicate their needed quantities only. In a two-way sale, both sellers 
and purchasers are sensitive to price, so that they offer not only the 
production/consumption quantities, but also the desired price.

In bilateral deals, given that consumers opt for the cheapest 
producers, market efficiency is enhanced.

Depending on the market mechanisms, the market may be either 
one-way or two-way. In a one-way market, independent system 
operator (ISO) considers the predicted load as a reference. This 
load prediction is performed both by consumers (across the area 
under their control) and operator (for the entire network). With 
this approach, the load is specified when launching UC Software. 
For this level of load, the ISO specifies the quantity of reserve 
and other ancillary services for each hour. Figure 1 shows how 
the market is closed in this model.

There is another variant of electricity market wherein energy 
suppliers and consumers provide not only quantities, but also 
proposed prices. In such markets, competition is promoted both 
at production and consumption levels. In two-way markets, the 
subject matter of maximizing social welfare is highlighted, because 
in such a case, each party has set load supply strategies by means 
of the price parameter (Figure 2).

Pricing is performed via any of the following three methods either 
in electricity exchange market or by ISO. In a pre-pricing method, 
price of the commodity is set before delivering the good, with 
the players agreeing on a quantity of electricity to be delivered 
at a predetermined price at a given time in future. In post-pricing 
method, price of the commodity is determined upon delivery; 
producers and consumers can alter their proposals up to a given 
time, and the market is settled in the course of offering processes.

The third method is a combination of the two above-mentioned 
methods. In instantaneous (cash) market, electricity price is 
determined at the last day before delivery, with any change between 
predicted and actual values of consumption which may end up with 
a difference between the predetermined and instantaneous prices 
being compensated via the second mechanism. In a combined 
market, system price is set before the delivery, and any imbalance 
is purchased by ISO in a market known as adjustment market in 
real-time.

In this case, market closing point is where social welfare is 
maximal. Producers who can offer their products at lower prices 
than the competitors will be selected sooner and with a larger 
deal of chance. In a case where consumers also propose prices 
for fulfilling their needs, naturally, those who are ready to pay the 

Figure 1: Balance in a one-way market with predetermined demand

Figure 2: Balance in a two-way market
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largest cost for the same commodity will enjoy priority. In such a 
case, both producers and consumers are well satisfied with the deal.

Electricity supply and demand shall be balanced continuously. 
Electricity production and consumption are performed at exactly 
the same time, and no storage facility for this commodity exists 
across the grid. Given that supply and demand fluctuations cannot 
be smoothed using inventory, electricity prices in cash market 
are highly unstable. Moreover, electricity prices are set locally, 
with no possibility for arbitrage deals on electricity. Electricity 
is a non-storable commodity, so that demand fluctuations may 
abruptly fluctuate its price.

4. TIME-SERIES MODELING APPROACH

One of the well-known models for the purpose of this research is 
autoregressive (AR) integrated moving average (ARIMA) model. 
In a general case, this method was expressed as ARIMA (p, d, q) 
by Box-Jenkins, where p is AR order of the model, q is the order 
of MA, and d is differential order of the model (to make the model 
stationary). In case one element is equal to zero, the model is 
denoted as either AR or MA. For instance, MA(1) is the same as 
ARIMA (0, 0, 1). In this method, once finished with determining 
the differential order and orders of AR and MA processes, model 
parameters are found.

Given highly subjective nature of the Box-Jenkins methodology, 
time-series analyzers have introduced and adopted other criteria 
for identification and recognition of orders in ARIMA models. 
Penalty function statistics (e.g. Akaike Information Criterion 
(AIC), Bayesian Information Criterion, and Hannan Quinn 
Criterion) have been used in the literature on the analysis of time 
series for presenting an accurate yet economic model in terms of 
the count of parameters. All of these functions possess a residual 
sum of squares (RSS) minimization component along with a 
penalty element which is a combination of the number of estimated 
coefficients along with the number of observations1.

The criteria used to determine lag length in non-seasonal modeling 
are solely dependent on the parameters q and p. In different 
configurations of ARIMA model, there are only rare cases where 
the values of q, d, and p exceed 1, and even this small domain 
covers many feasible cases in the prediction. Autocorrelation 
function (ACF) and partial ACF (PACF) are used to determine 
the values of p and q.

4.1. Seasonal Time Series Modeling – Seasonal AR 
Integrated MA (SARIMA)
In seasonal time series econometrics literature, there are two 
approaches to the modeling of seasonal time series. Commonly 
known as conventional method, the first approach is based on 

1 These sample functions are defined as follows: BCS = log (RSS/T) + [log 
(t) × K/(T)], BQC = log (RSS/T) + [2 log (log (t))×K/(T)] and AIC = log 
(RSS/T) + [2 K/(T)]. Where K is the number of estimated coefficients 
(1+p+q+P+Q), RSS is residual sum of squares, and T is the number of 
observations. Lag length with optimal minimal is determined by minimizing 
the above functions. However, finding the solution is somewhat difficult 
considering the large number of P, Q, p, and q parameters.

the assumption that, seasonal component of a time series is 
assumed to be non-stochastic and independent of non-seasonal 
components. In contrast, the second approach assumes that the 
seasonal component is random and independent of non-seasonal 
components. Such that, for example, price of a product in the 
current period not only is a function of the product price in 
the preceding month, but also of that in the same month in the 
past year. Therefore, in order to predict a variable (price or any 
other variable of interest), not only the prices in the neighboring 
months (seasons) shall be incorporated into the model, but also 
the prices at the same month(s) in the previous years(s) shall be 
further examined. The most well-known seasonal ARIMA model 
is the multiplicative model known as Box-Jenkins (1976) model.

4.2. Monthly Time Series Data Modeling
Box-Jenkins approach can be used as tool for providing reliable 
predictions for policy-setting. Similar to non-seasonal time series, 
values of P, Q, p, and q were determined using ACFs and torques of 
the ARMA (p, q) (P, Q)s process. As an example, autocorrelation 
behavior of a general seasonal process is expressed as ARMA 
(0, 1) (0, 1)s with S = 4, 12 where s refers to the type of the time 
series period. In this seasonal process, the interrupting component 
is assumed to be white noise, with the absolute values of the two 
parameters Θ1 and θ1 being smaller than 1.

xt = (1−θ1B) (1−Θ1B
S)εt (1)

Therefore, ACFs of the time series xt are as follows:

ρ θ θ ρ Θ Θ1 1 s= − + = − +/ ( ), / ( )1 11
2

1 1
2  (2)

ρ ρ ρ ρ θ Θ θ Θs s+1 s 1 1− = = = + +1 1 1
2

1
21 1/ ( ) ( )  (3)

For example, in a time series with s = 4, ACFs are non-zero for 
the lags of 1, 3, 4, and 5 only. Comparing ACFs of the two 
processes MA (1) and MA(1)s can be interesting. For the two 
models, these functions are observed to be ρ θ θ1 1 1

21= − +( )/  and 

ρ Θ Θs = − +( )1 1
21 , respectively, which are exactly the two first 

ACFs of the process SARMA (0, 1) (0, 1)s. Multiplication of these 
two torques (i.e., ρs−1=ρs+1=ρsρ1,) gives mutual effects of these two 
periods. Parameters of a seasonal model are estimated in a similar 
way to that followed for an annual time series model. The 
coefficients can be estimated via either maximum likelihood 
method (conditional and deterministic) or least squares (linear and 
nonlinear) method.

4.3. Validation and Model Characterization Criteria
In order to evaluate the estimated model and statistically validate 
it, one could use white noise test on its residual component. In 
this hypothetical tests, ACF and PACF shall exhibit no significant 
difference from zero. Variance (standard deviation) of kρ̂  can 
calculated using Bartlett’s approximation. For the seasonal time-
series model AIRMA(0,0,1)(0,0,1)12, Bartlett’s approximation of 
the variance of kρ̂  is as follows:

( ) ( )2 2 2 2
k 1 11 12 13ˆ ˆ ˆ ˆvar =(1+2 + + + /T;       k>13ˆρ ρ ρ ρ ρ  (4)
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For s = 4, the above approximation becomes:

( ) ( )2 2 2 2
k 1 3 4 5ˆ ˆ ˆ ˆvar = (1+2 + + + /T;      k>5ˆ  ρ ρ ρ ρ ρ  (5)

Under null hypothesis (i.e., the studied phenomenon is white 
noise), all of the autocorrelation factors become zero and standard 
deviation of kρ̂  is equal to 1 T . In addition, another method 
for controlling and evaluation of adequacy of a general Box-
Jenkins model is to analyze the residuals obtained from the 
estimated model (7.1). In this approach, partly resembling 
diagnosis investigations on time-series models with odd periods, 
ACFs and sample ACFs are used. Also in the seasonal time series 
data, Box and Pierce’s sample function Q and Loung-Box sample 
function Q* were used, as defined below:

K
2
i t

i=1

ˆQ=T' r ( )∑ ε  (Box and Pierce) (6)

K
* ' ' 1 2

i t
i=1

ˆQ =T'(T +2) (T +1) r ( )−∑ ε  (Loung-Box) (7)

Where T′ = T−(d+s.D) and T is the number of observations in the 
main time series, s is the number of seasons per year (or the number 
of months per year, 4 or 12), and d and D are the number of annual 
and monthly differentiation of the studied time series to arrive at 
a stationary process zt (or filtered xt). The parameter ri

2  is the 
squared sample correlation at lag i for the residuals of the estimated 
model (7.1). It is obvious that, if D = d = 0, then T´ = T; this is the 
sample function used to identify annual data.

Both of these sample functions can be used for identification studies. 
However, it can be proved that, Q* exhibits better performance in 
this respect, so that this statistic is generally recommended for 
checking adequacy of the model. The larger the value of 2

i tˆr ( )ε  
and hence Q*, the further autocorrelation will be the residuals. Then, 
Q* shows that the estimated model is inadequate and the obtained 
residual is not white noise. That is, there are still some information 
in lε̂  which are of particular trend and should be considered in the 
autocorrelation or MA component of previous values of zt.

Monthly seasonal time series parameters were estimated similar 
to the quarterly time series using conditional maximum likelihood 
method. Complexity of modeling this data arises from identifying 
different types of unit roots that this process may have.

5. GÓMES-MARAVALL MODEL

SEATS stands for Signal Extraction in ARIMA time series; this 
is the model introduced by Gómes and Maravall for predicating 
seasonal data with missing data points. In this research, the Gómes 
model was used to predict electricity price in energy market. This 
model uses monthly data and SARIMA to predict time series based 
on actual time series. This model enjoys numerous advantages. 
Firstly, the data are studied based on monthly seasonal changes, 
e.g. it compares all Octobers and uses the results for time-series 
prediction. Secondly, missing data points may not interrupt the 

estimation flow. One of the most important advantages of this 
model is to assign larger weights to the most recent data during the 
period considered for prediction (Gómez and Maravall, 1998). In 
the present research, monthly data during 2006–2015 periods were 
used for estimating the models using Gómes model. The program 
falls into the class of so-called ARIMA-model-based methods for 
decomposing a time series into its unobserved components (i.e., for 
extracting from a time series its different signals). The program 
starts by fitting an ARIMA model to the series. Let xt denote the 
original series, (or its log transformation), and let:

zt = δ(B)xt (8)

Represent the “differenced” series, where B attitudes for the lag 
operator, and δ(B) stand for the differences taken on xt in order 
to achieve stationarity. In seats,

δ ∇ ∇B d
s
D( ) =  (9)

Where D s D
s1 B ,  and (1 B )= − = −∇ ∇  represents seasonal 

differencing of period s. The model for the differenced series zt 
can be expressed as

φ θB z z (B)at( ) −( ) =  (10)

Where z  is the mean of zt, at is a white-noise series of innovations, 
ordinarily distributed with zero mean and variance σ2, ϕ(B) and 
θ(B) are AR and MA polynomials in B, correspondingly, which 
can be conveyed in multiplicative form as the produce of a regular 
polynomial in B and a seasonal polynomial in Bs, as in

ϕ(B) = ϕr (B)ϕs (B
s) (11)

θ(B) = θr (B)θs (B
s) (12)

Putting together 1–5, the complete model can be written in detailed 
form as

φ φ θ θr s
s d

s
D

t r s
s

tB B x B B a +c( ) ( )∇ ∇ = ( ) ( )  (13)

And, in concise form, as

Φ(B) xt = θ(B) at+c (14)

Where Φ(B) = ϕ(B)δ(B) represents the complete AR polynomial, 
including all unit roots. Notice that, if p denotes the order of ϕ(B) 
and q the order of θ(B), then the order of Φ(B) is P = p+d+D×s.

The AR polynomial ϕ(B) is allowed to have unit roots, which 
are typically estimated with considerable precision. Unit roots in 
ϕ(B) would be present if the series were to contain a nonstationary 
cyclical component, or if the series had been under differenced. 
They can also perform as nonstationary seasonal harmonics. The 
program decomposes a series that follows model (10) into several 
components. The decomposition can be multiplicative or additive. 
Since the former becomes the second by taking logs, we shall use 
in the discussion an additive model, such as:



Jamalmanesh, et al.: Prediction of Hydropower Energy Price Using Gómes-Maravall Seasonal Model

International Journal of Energy Economics and Policy | Vol 8 • Issue 2 • 201886

xt = ∑ixit (15)

Where xit represents a component. The components that seats 
considers are:
xpt = The TREND component,
xst = The SEASONAL component,
xct = The CYCLICAL component,
xut = The IRREGULAR component.

Broadly, the trend component represents the long-term evolution 
of the series and displays a spectral peak at frequency 0; the 
seasonal component, in turn, captures the spectral peaks at seasonal 
frequencies. Besides capturing periodic fluctuation with period 
longer than a year, associated with a spectral peak for a frequency 
between 0 and (2π/s), the cyclical component also captures short-
term variation associated with low-order MA components and AR 
roots with small moduli. Finally, the irregular component captures 
erratic, white-noise behavior, and hence has a flat spectrum. The 
components are determined and fully derived from the structure of 
the (aggregate) ARIMA model for the observed series, which can 
be directly identified from the data. The program is mostly aimed 
at monthly or lower frequency data and the maximum number of 
observations is 600.

6. RUN THE MODELS AND RESULT

Tramo (“Time Series Regression with ARIMA Noise, Missing 
Observations, and Outliers”) performs estimation, forecasting, and 
interpolation of regression models with missing observations and 
ARIMA errors, in the presence of possibly several types of outliers. 
Seats (“Signal Extraction in ARIMA Time Series”) performs an 
ARIMA-based decomposition of an observed time series into 
unobserved components. The two programs were developed by 
Victor Gomez and Agustin Maravall. Used together, Tramo and 
Seats provide a commonly used as a program for seasonally 
adjusting a series. Typically, individuals will first “linearize” a series 
using Tramo and will then decompose the linearized series using 
Seats. The parameters of the Gomez-Maravall model are estimated 
in Table 1 that is derived from the implementation of this model.

Refer to Gómez and Maravall (1996) for the interpretation of 
Table 1. After run the model and specify the parameters of model, 
the Eviews software provides the price forecast for 24-month 
period, as shown in Figure 3.

6.1. Electricity Price for Hydropower Plants
To estimate the electricity price of the Karun 1 and 3 dams, 
we use the forecasted results of the electricity price for 

MasjedSoliman hydropower plant. The electricity price for 
these three power plants is close and there is no significant 
difference. As a result, ordinary least squares method is used 
to estimate these prices. To do this, we consider electricity 
prices for the Karun 1 and 3 dam as a function of the price of 
the MasjedSoliman hydropower plant. First, for the Karun 3 
hydroelectric power station we have:

P = + .P +t t
k3 Msjd

tα β ε  (16)

Then for the Karun 1 power plant:

P = + .P +t t
k1 Msjd

tα β ε  (17)

The predicted results are presented in Table 2.

Using the above models, the results of which are reflected in 
Table 2, the estimated values of electricity purchasing price from 
Khuzestan hydroelectric power plants (by Iranian electricity 
market) are presented in the following Table 3.

7. CONCLUSIONS

In most of modeling practices, various possible methods have 
been used for estimating the models followed by comparing the 
methods based on statistics indicating the power of predictions. In 
the present research, however, Gómez and Maravall (1996) model 
are investigated and compared using seasonal data.

Prices tend to move along an average price determined by the 
competitive market forces. In electricity market, the production 

Figure 3: 2-year forecast of electricity prices using the Gomez 
Maravall model

Table 1: The results of the Gomez-Maravall model in predicting electricity prices
Index 1 Index 2 Index 3 Index 4 Index 5
MQ=12 IMEAN=1 LAM=-1 D=1 BD=1
P=0 BP= 0 Q=1 BQ=1 IREG=0
ITRAD=0 IEAST=0 IDUR=0 M=36 QM=24
AIO=2 INT1=1 INT2=120 RSA=0 SEATS=2
VA=3.50 PC=0.143 NOADM=1 BIAS=1 MAXBIAS=0.5
SMTR=0 THTR=-0.4 RMOD=0.5
Source: Research results
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unit with the lowest efficiency will be the last unit to respond to 
the demand for electricity. Moreover, as an effective factor in 
determining prices, air temperature follows a periodic pattern 
which returns to the average price. This pattern is commonly used 
to explain the autocorrelation of electricity price time series. As 
such, some sort of mean reversion model is expected for electricity 
prices.

The solution which makes the model able to predict these data is 
to include the variable of time scattering variable into the mean 
reversion model. These models can further take into account 
intense fluctuations in the values of variables, making them 
suitable for modeling electricity price data which can be influenced 
by network interruptions, meteorological factors, sudden rise of 
demand, and production fluctuations. Fluctuations in electricity 
prices are commonly not stable, so that the prices reverse to the 
mean rapidly. ARIMA and seasonal ARIMA models introduce 
effect of the information received from common and uncommon 
states into the model. Some of the received information are of 
the type of normal events and result in smooth changes in prices; 
these changes are explained by the mean reversion model. Some 
other received information is uncommon and lead to fluctuations 

in prices. These models express market prices as a function of 
preceding prices and previous error terms.

Short-term electricity prices are highly unstable due to inability to 
store the electricity, inelasticity of demand with respect to prices, 
and supply limitations, particularly during peak consumption 
periods. Instantaneous (cash) instability of electricity prices may 
change due to weather conditions and the forces contribuxting 
to supply and demand. However, time series of mid-term prices, 
such as monthly average price, exhibit more stable trend and 
are seemingly more suitable for predictive models, especially 
in hydropower plants where loner-term seasonal changes are 
common.

We used two programs were developed by Victor Gomez and 
Agustin Maravall. We used a commonly program, Tramo and 
Seats for seasonally adjusting a series. Typically, individuals will 
first “linearize” a series using Tramo and will then decompose the 
linearized series using Seats. We used Gómes-Maravall model, 
an ARIMA model was estimated for predicating electricity price 
in Iranian market using energy purchase data from a hydropower 
plant. The model was run utilizing SEATS (Signal Extraction in 
ARIMA Time Series) and TARMO (“Time Series Regression with 
ARIMA Noise, Missing Observations, and Outliers”) programs. 
For this purpose, energy purchase data from three Karun river 
hydropower plants (Khuzestan Province, Iran) was used.
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