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Abstract While firm-level and micro issue analysis become an important part in research of 

international trade, only a few work is concerned about the goodness-of-fit for size 
distribution of firms. In this paper, we revisit the statistical aspects of firm productivity and 
sales revenue, in order to compare different definitions of statistical distances. We first 
deduce the exact form of size distribution of firms by only implementing the assumptions 
of productivity and demand function, and then introduce the famous g-divergence as well 
as its statistical implications. We also do the simulation and calibration so as to compare 
those different divergences, moreover, tests the combined assumptions. We conclude 
that minimizing Pearson χ2 and Neyman χ2 produces similar results and minimizing 
Kullback-Leibler divergence is likely to take the expense of other distance measures. 
Additionally, selection among different statistical distances is much more significant than 
demand functions. 

Key words Pareto distribution, log-normal distribution, demand function, statistical divergence, firm 
productivity, sales revenue  
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1. Introduction 

Starting from the pioneering work by Melitz (2003), who developed a dynamic industry 
model with heterogeneity to analyze the intra-industry effects, firm-level analysis has 
become a mainstream research topic in international trade. To the extent that empirical 
implications have been of concern, trade theory has been aiming at understanding 
aggregate evidence on such topics as the factor content of trade and industry 
specialization (Bernard et al., 2003). From this perspective, many studies have also 
been done in understanding the micro issues, for example, the impact of firm size on 
productivity. 
The distribution of firm productivity which is assumed to be randomly drawn grabs 
economists' attentions both in theoretical and empirical work. Among the literature, lots 
of studies assume Pareto (Arkolakis et al., 2012; Melitz, 2003; Head et al., 2014) or 
Log-Normal (Head et al., 2014; Bee et al., 2014) distribution of firm productivity. Upon 

mailto:tianhao.wu@yale.edu


On a Class of Statistical Distance Measures for Sales Distribution: Theory, Simulation and 
Calibration, Tianhao Wu 

 142 

the assumption of productivity, the distribution of sales can be determined by 
technology and interaction between firm and consumers. From a theoretical and 
statistical perspective, CES (Constant Elasticity of Substitution) expenditure function 
bridges the Pareto distributions of productivity and sales, and the Log-Normal 
distributions of productivity and sales (Helpman et al., 2004; Head et al., 2014;  
Mrazova  et al., 2016), though the equilibrium resulting in Log-Normal firm size has not 
been deduced yet. There is also some more detailed work examining the validity of 
Pareto and Log-Normal sales distribution, for example, Stanley et al. (1995) used a Zipf 
plot to demonstrate that the upper tail of the size distribution of firms is too thin relative 
to the log normal rather than too fat. 
Jumping from the scope of international trade, some empirical studies focus on fitting 
the actual sales. Cabral and Mata (2003) demonstrated the right-skewness of firm size 
distribution using Portuguese manufacturing data. And Brynjolfsson et al. (2014) 
studied the changes in the shape of Amazons sales distribution curve as well as its 
impact on consumer surplus gains. 
Nevertheless, little literature is concerned about the goodness-of-fit for size distribution 
of firms. Mrazova et al. (2016) used KLD (Kullback Leibler Divergence) to measure the 
distances between estimated density and theoretical density, in order to test a new 
demand function developed by them, called CREMR. In fact, testing and measuring the 
statistical distance between the empirical distribution and the estimated distribution is of 
great importance if we want to test the combined assumptions, at least from a statistical 
standpoint. 
Unavoidably, talking about the statistical distance involves the measure of statistical 
divergence, which is distinguished from the traditional Euclidean distance in metric 
space. In this paper, we introduce the well-known g-divergences that are applied widely 
in statistics and engineering. To our surprise, this has not been used too much in 
economics, in spite of its great properties in measuring the distances. 
We start from the assumption of firm productivity, either Pareto or Log-Normal 
distributions that are proved to be very effective and empirically practical. By combining 
the assumptions of firm with different forms of demand systems, which further imply the 
exact forms of the probability distribution of firm sizes. Besides the theory, we also run 
simulations to get a sense of how those different g-divergences work, concluding that 
minimizing Pearson χ2 and Neyman χ2 produces similar results and minimizing 
Kullback-Leibler divergence is likely to take the expense of other distance measures. 
Finally, we use the data on US exports to Canada in 2015 showing that CES or LES 
are likely to be an appropriate representation comparing to Translog demand function. 
To the best of our knowledge, this paper is one the few works studying the firm size 
distribution from a distance angle. 
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2. Sales Distribution 

Without assumptions on demand and technological constrains, firm characteristics can 
be linked by a behavior function by only assuming that characteristics of each firm are 
monotonically increasing on the number of firms, thus a hypothetical dataset of a 
continuum of firms (Mrazova et al., 2016). Implementing this assumption, when the 
linked demand function and the distribution of productivity are specified, sales 
distribution can be determined statistically. In this section, we use three kinds of 
demand systems to extract the exact forms of sales distribution by assuming that firm 
productivity is either distributed Pareto or Log-Normal. 

2.1. Pareto productivity 

Suppose that the productivity ' is distributed Pareto with scale parameter and 
shape parameter α, so the cumulative probability function is  
From the perspective of pro t-maximization, marginal cost equals marginal revenue. As 

a result, we can link sales r and productivity by , where x is the output. 
Accordingly, demand function indeed plays the role of bridging productivity and firm 
size.  
We first give an example of how to deduce the size distribution of firms by using 
Constant Elasticity of Substitution demand function. Suppose the inverse CES demand 
function takes the form                 , we can utilize sales revenue to express firm 
productivity by the following steps, 
 
 
 
 
 
 
 
 
 
Then by the variable transformation, we know that the cumulative probability function of 
sales is                                                               under the setting of CES demand 
function.  
Table 1 summarizes the expression of productivity by sales as well as the sales 
distribution by three common classes of demand systems. 
 

(1) 
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Table 1. Sales distribution with Pareto distribution of productivity 
 
 

      
 
 
 
 
While we don't provide the exact steps for extracting the sales distributions with LES 
and Translog demand functions, it's not hard to justify the above table by using the 
algorithm developed for CES type. Moreover, though we just consider CES, LES and 
Translog here, in fact, CREMR, Linear and AIDS fall into the same forms of the sales 
distributions respectively (Mrazova et al., 2016). 

2.2. Log-Normal productivity 

This section assumes Log-Normal distribution of productivity with location parameter µ 
and scale parameter σ, so the CDF is                       
 
Where Φ is the cumulative probability function of a standard normal random variable. 
The way of extracting the sales distributions is similar to the last section. When the 
forms of demand functions and the expressions of firm productivity by firm size do not 
depend on the distribution of productivity, we only report the sales distributions in the 
table 2 below. 
 

Table 2. Sales Distribution with Log-Normal distribution of productivity 

 
We express the sales distributions by using the original parameters in demand 
functions and distributions of productivity. However, sufficient parameters in each 
distribution are less than those in the table. For example, for the combination of LES 
with Pareto case, we can express the sales distribution by  

                                                           

1
As same as those in Table 1 
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Accordingly, estimating m; k and h instead of ; a; b and α is sufficient to know the 
exact distribution of sales. We call it a generalization of parameters and will use the 
generalized ones for estimation in the next two sections. 

3. Statistical divergences 

Statistical divergences are used to measure the "distance" between two probability 
distributions. The importance of suitable measures of distance arises of the role play in 
the problems of inference and discrimination (Ullah, 1996). While the concepts of 
statistical distances are not widely applied in Economics, experts in other fields have 
appreciated them in other fields. For instance, different distances are used to identify 
the relation between texts of DNAs, planetary nebulae and unitary transformations 
(Pevzner, 1991; Steene and Zijlstra, 1994; Acin, 2001). In this section, we overview an 
important class of statistical divergences which is crucial in this paper. 

3.1. g-Divergence 

Suppose f is the actual (empirical) density and  f is the estimated density. The g-
divergence22 is defined as 
 

 
 
Where g(.) is an arbitrary convex function. The g-divergence is characterized as a 
unique family of convex separable divergence that satisfies the information 
monotonicity property (Amari, 2009; Amari and Nagaoka, 2000). The g-divergence is 
not necessary a metric since the symmetric property is not satisfied for every g, i.e. 

Although considering this general form is promising, we need the 
analytical expression of distances in order to do parametric estimations. As a matter of 
fact, this class of divergences by defining different g functions have explicit statistical 
meanings. In this paper, we will mainly use the following. 

3.1.1. Kullback-Leibler divergence 

Define g(x) = -log(x), then the divergence becomes  

                                                           

2 Some papers name it as f-divergences, such as Nielsen and Nock (2013). But in order not to 
conflict with the notations of density, we use g here. 

(2) 

(3) 
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It's the famous Kullback-Leibler Divergence (Relative Entropy). Since minimizing KLD 
is equivalent to maximizing the Likelihood function, KLD estimators are just MLEs. By 
this property, KLD might be the most widely used divergence, for example, Mori et al. 
(2005) used this measure to define industrial localization and Rohde (2016) studied 
income inequality based on a symmetric extension of KLD. 

3.1.2. Pearson and Neyman χ2 

Defining g(x) = (x-1)2 and g(x) = (1-x)2 gets Pearson and Neyman χ2 estimators: 
 

sau  
 
These two estimators are applied to sets of categorical data to evaluate how likely it is 
that any observed difference between the sets arose by chance, which is known as χ2 
test. 

3.1.3. Total variation distance 

If we define                           , we can get the divergence                                
By this definition, the divergence is symmetrical, i.e.  

3.2. Other divergences 

In fact, there are a lot of statistical distances that can be considered without restriction 
to g-divergences. As a robustness check and comparison, we will also use 
Kolmogorov-Smirnov Statistic and Hellinger Distance in the next two sections. 
Kolmogorov-Smirnov Statistic is defined as                            , where F and     are the 
true and estimated cumulative probability functions with respect to f and   . 
Furthermore, Hellinger Distance is                           , to which square is in g-
divergences class. 

4. Simulation 

Firm productivity and sales revenue are fitted by Pareto and Log-Normal distribution in 
many studies. Consequently, by the importance of these two probability distributions, 
this section presents the simulated results of Pareto and Log-Normal variables. 
Specifically, we simulate a set of values drawn from either 
Pareto or Log-Normal distribution, then minimizing different statistical distances defined 
in the last section to estimate the parameters in order to get a sense of how those 
distances work. 
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4.1. Pareto simulation 
In this section, we simulate Pareto variable with scale parameter 2.5 and shape 
parameter 1.5. Figure 1 is the histogram with density of our simulated data. 
 

Figure 1. Pareto 
 

 
 
In order to estimate the parameter, we minimize over each definition of statistical 
distance and report them for each different optimization. 
 

Table 3. Distances between predicted density and actual density for Pareto 
 

 
 
The first column represents the minimized distance and each row stands for the 
estimated values with correspondence to the rule in the left. 

4.2. Log-Normal simulation 

We do a similar simulation and optimization as last section by using Log-Normal 
distribution with location parameter 2 and scale parameter 1.2. Below is the histogram 
with plotting density. 
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Figure 2. Log-Normal 
 

 
 
Again by minimizing different statistical divergences, we have the following summary 
table. 
 

Table 4. Distances between predicted density and actual density for Log-Normal 
 

 
 

4.3. Discussions 

Cross-comparison may be of little interest, but we can compare the values within the 
same distance group. We notice that minimizations of Pearson χ2, Neyman χ2 and total 
variation distance give similar estimated results with respect to all different measures 
and both for Pareto and Log-Normal simulations. Furthermore, such similarity is even 
larger for minimizing Pearson χ2 and Neyman χ2. Also the estimated Pearson χ2 and 
Neyman χ2 are pretty close under each rule. While it's easy to see from the forms of 
those two χ2 estimators that their definitions are actually highly related and when the 
estimated density approximates the true density, they are closer, we do not have any 
powerful explanations for why TV method is also similar. 
Focusing on each single goodness-of-fit, we see that the most of them have large 
variations among different optimization rules, when K-S statistic has the smallest 
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variation33. So we would expect a stable performance for K-S estimations. Moreover, 
KLD estimation method looks different from others, if we remove the row of KLD in the 
table, we can easily discover large stability of all estimators. From these perspectives, 
KLD and K-S distances may not be very good ones since they minimize KLD and K-S 
respectively by taking the expense of other distances. We can conclude that more 
obviously by look at the bold numbers which are the maximum of each column. 

5. Calibration 

In this section, we do a calibration to show how the concepts of g-divergences can test 
economics assumptions, at least from a statistical perspective. Certainly, each market 
can be modeled by a mixture of demand systems. And the specification of demand 
system associate with the assumption of firm productivity can determine the distribution 
of sales, which further determines the behavior of sales. However, traditional 
economics methods fall into regression to fit sales data, hence testing whether the 
assumptions hold, for example, see Tobin (1950); Bergstrom and Goodman (1973); 
Griliches (1958). Intuitively, smaller the statistical distances are, the more 
approximation of the predication, resulting in more reasonable assumptions. 
We give an example of how these work. To be specific, we use aggregate 
manufacturer-level sales data exported from US to Canada in 2015, which can be 
found via US Census Bureau Economic Statistics. We will mainly focus on the 
performances of different demand settings and the firm productivity assumptions. 
Figure 3 below are two histograms with density plot, the right one is after taking 
logarithm transformation. 
 

Figure 3. Histograms 
 

 
 

                                                           

3
The K-S column has the smallest variation 
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At the first glance, either Pareto or Log-Normal is likely to fit the data well. Then we turn 
to the g-divergences estimations, table 5 below reports the estimated divergences 
under two different assumptions of productivity and multiple demand settings. For 
example, the entries of the Translog column in the Pareto suitable mean the minimized 
values of those six divergences. And we make the minimums in each row bold. 
 
Table 5. Distances between predicted density and actual density for selected demand 

functions 
 

 
 

Two main assumptions are implemented in the calibration, the distribution of firm 
productivity and the form of demand function. Recall that, by using the combination of 
two assumptions from each group, we have derived the exact distribution of sales 
revenue in section 2. Hence, each column in the two tables represents the same form 
of size distribution of firms. First of all, we note that from the bold numbers, LES and 
Translog predict better sales distributions, in other words, result in smaller distances. In 
fact, none of the distances by Translog brings the smallest estimation in each row. 
What's more fascinating is that same demand functions are selected as the ones with 
the smallest distances for both Pareto and Log-Normal productivity except for total 
variation statistics. For instance, the assumption of LES demand function provides the 
best of goodness of fit for whatever the distribution of productivity. Consequently, we 
are confident to say that LES and CES assumptions are more likely to be in line with 
reality. Secondly, when it comes to the same demand system, Log-Normal productivity 
is always better than Pareto in all aspects of distance measures under CES, since all 
values in the first column below are smaller than those above. The same occurrence 
happens to LES except for TV. Nevertheless, when assuming Translog demand 
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function, things are opposite other than Pearson χ2 estimation. Finally, we note that the 
differences between the selections of divergence measure are certainly less significant 
than demand functions. Or say, the differences between columns are much less than 
the differences between rows, which are an evidence of the importance of choosing 
statistical measures. However, this is just a simple calibration example which illustrates 
how to compare the assumption in the market of U.S. exporting to Canada. Economics 
networks can be hugely complicated and cannot be fuelled explained with very simple 
assumptions. Also, sales data are of course not drawn from a completely random 
process. Thus we do not have a dinner table yet to discuss the underlying difference 
among distances and how to predict the sales distribution generally. 

6. Conclusions 

With firm-level analysis playing an essential role in international trade research, 
understanding micro issues such as firm productivity and firm size are not only 
important for theory development but also empirically useful. In this paper, we revisit 
the statistical perspectives of productivity and firm sales and use an efficient tool to 
compare different statistical divergences as well as assumptions of firm and demand 
functions. The simulation results show that Pearson χ2 and Neyman χ2 perform pretty 
similar and minimizing Kullback-Leibler divergence is likely to be at the expense of 
other distance measures. We also do a calibration on manufacturer-level data exported 
from US to Canada in 2015. From the empirical results, we conclude that Translog is 
the most impossible one to fit the demand system in the example. Moreover, we 
conclude that selection among different statistical distances is much more significant 
than different demand functions. We emphasis our work as the one of few papers 
studying the goodness-of-fit problem in predicting size distribution of firms, from an 
empirically statistical standpoint. Also, we do think more work can be done on this topic 
such like how to use the divergence tool to test economics assumptions. 
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