
Kleshch, Kyrylo; Shablii, Volodymyr

Article

Comparison of fuzzy search algorithms based on
Damerau-Levenshtein automata on large data

Reference: Kleshch, Kyrylo/Shablii, Volodymyr (2023). Comparison of fuzzy search algorithms
based on Damerau-Levenshtein automata on large data. In: Technology audit and production
reserves 4 (2/72), S. 27 - 32.
https://journals.uran.ua/tarp/article/download/286382/280636/661679.
doi:10.15587/2706-5448.2023.286382.

This Version is available at:
http://hdl.handle.net/11159/631584

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights[at]zbw.eu
https://www.zbw.eu/econis-archiv/

Standard-Nutzungsbedingungen:
Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken
und zum Privatgebrauch gespeichert und kopiert werden. Sie
dürfen dieses Dokument nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben
oder anderweitig nutzen. Sofern für das Dokument eine Open-
Content-Lizenz verwendet wurde, so gelten abweichend von diesen
Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.

Terms of use:
This document may be saved and copied for your personal
and scholarly purposes. You are not to copy it for public or
commercial purposes, to exhibit the document in public, to
perform, distribute or otherwise use the document in public. If
the document is made available under a Creative Commons
Licence you may exercise further usage rights as specified in
the licence.

 https://zbw.eu/econis-archiv/termsofuse

mailto:rights@zbw-online.eu
https://www.zbw.eu/econis-archiv/
https://zbw.eu/econis-archiv/termsofuse

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

27TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

UDC 004.02
DOI: 10.15587/2706-5448.2023.286382

COMPARISON OF FUZZY SEARCH
ALGORITHMS BASED ON DAMERAU-
LEVENSHTEIN AUTOMATA ON
LARGE DATA

The object of research is fuzzy search algorithms based on Damerau-Levenshtein automata and Levenshtein
automata. The paper examines and compares solutions based on finite state machines for efficient and fast finding
of words and lines with a given editing distance in large text data using the concept of fuzzy search.

Fuzzy search algorithms allow finding significantly more relevant results than standard explicit search algo-
rithms. However, such algorithms usually have a higher asymptotic complexity and, accordingly, work much longer.

Fuzzy text search using Damerau-Levenshtein distance allows taking into account common errors that the user
may have made in the search term, namely: character substitution, extra character, missing character, and reor-
dering of characters. To use a finite automaton, it is necessary to first construct it for a specific input word and
edit distance, and then perform a search on that automaton, discarding words that the automaton will not accept.
Therefore, when choosing an algorithm, both phases should be taken into account. This is because building a ma-
chine can take a long time. To speed up one of the machines, SIMD instructions were used, which gave a speedup
of 1–10 % depending on the number of search words, the length of the search word and the editing distance.

The obtained results can be useful for use in various industries where it is necessary to quickly and efficiently
perform fuzzy search in large volumes of data, for example, in search engines or in autocorrection of errors.

Keywords: fuzzy search, Levenshtein automaton, Damerau-Levenshtein distance, editing distance, finite state
machines.

Kyrylo Kleshch,
Volodymyr Shablii

© The Author(s) 2023

This is an open access article

under the Creative Commons CC BY license

How to cite

Kleshch, K., Shablii, V. (2023). Comparison of fuzzy search algorithms based on Damerau-Levenshtein automata on large data. Technology Audit and

Production Reserves, 4 (2 (72)), 27–32. doi: https://doi.org/10.15587/2706-5448.2023.286382

Received date: 05.07.2023

Accepted date: 24.08.2023

Published date: 28.08.2023

1. Introduction

In the modern information society, large arrays of text
data are becoming a necessary component in many areas of
human activity, such as: trade, medicine, science, economy,
and information technology. Fuzzy search allows to effi-
ciently find the information you need, where there may
be inaccuracies, errors or incomplete information. However,
searching for the necessary information in such large data
sets can be laborious and time-consuming.

The basic idea behind fuzzy search is to find strings that
closely match a given pattern string called a search term. Unlike
an exact search, where it is necessary to find an exact match
to a pattern, a fuzzy search allows for some error or inaccuracy
between the specified string and the searched string. At the
same time, each match is given a numerical characteris tic – the
similarity degree of the found string to the template [1]. This
type of search is widely used in search engines, as it allows
getting close results, even in the absence of exact matches
in the query. Thus, fuzzy search improves the user experi-
ence and provides more accurate and correct search results.

Also, fuzzy search has an important application in the field
of computer vision. Optical character recognition systems
often face problems due to noise, artifacts, font variations,

and other factors that can cause errors in the recognized text.
The use of fuzzy search methods helps to improve the
quality of word recognition and correct errors [2].

Fuzzy search algorithms are not new, and have been
used for quite some time. However, the amount of informa-
tion that needs to be and can be stored in various data
repositories has increased significantly recently. It is for this
reason that the emphasis should be placed on the speed of
execution and optimization of the algorithm, even if the
accuracy will decrease slightly. One of the key concepts
in fuzzy search for evaluating the similarity of two strings
is the concept of edit distance. Editing distance is defined
as the minimum number of conversion operations on one
line to make it identical to another.

A widely used type of editing distance is the Levenshtein
distance. It is defined as the minimum number of opera-
tions (insertion, deletion and replacement of characters)
required transforming one string into another. To more
accurately account for user errors when typing, a modified
Lowenstein distance, known as the Damerau-Lowenstein
distance, is used [3]. It adds one more operation – the
transposition of two symbols. One of the most common
methods for calculating the Levenshtein distance is the
algorithm developed by Robert Wagner and Michael

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

28 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

Fischer [4]. Its main idea is to apply dynamic programming
to find the editing distance. There are also alternative ap-
proaches to algorithms based on dynamic programming, for
example, the use of finite automata that accept all strings
that differ from a given pattern by no more than a given
distance [1].

As part of the study, the task of finding words on
a large set of textual data, which is constantly updated
and changed, was considered. The user may search for
words without knowing the correct spelling, and may make
mistakes while typing on the keyboard.

The aim of research is to analyze various fuzzy search
algorithms and choose the best one for a specific set of
input data. Build dependencies and draw conclusions about
the optimal Damerau-Levenshtein automaton for search
words of different length and editing distance. Analyze the
feasibility of building an automaton with small input data.
This will make it possible to implement a whole system
of fuzzy search using several algorithms based on finite
state machines, which will choose the optimal approach
depending on the search word and input data.

2. Materials and Methods

The object of research is fuzzy search algorithms based on
Damerau-Levenshtein automata and Levenshtein automata.
A graphical representation of a finite state machine can
be presented in the form of a state diagram or transi-
tion table. A state diagram provides an intuitive visual
representation of states, transitions, and final states, while
a transition table provides detailed information about each
state and all possible transitions. Fig. 1 shows an example
of an automaton that accepts lines ending in an odd num-
ber of «a» characters in the form of a state diagram [3].
The states of the automaton are indicated by circles, and
the initial state is indicated as 0. The double circles are
responsible for the final states of the automaton. Transi-
tions between states are indicated by arrows.

Fig. 1. Image of the automaton in the form of a state diagram

Finite automata are divided into 2 types: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite Auto-
maton (NFA). The main difference between DFA and NFA
lies in the transition behavior. DFAs have a unique transi-
tion for each input symbol, while NFAs can have multiple
transitions or ε-transitions for a single input symbol. Instead,
ε-transitions are called transitions that read an empty string.
When moving to a state with ε-transitions, the automaton
finds itself simultaneously in the states to which these transi-
tions lead. The machine is shown in Fig. 1 is deterministic
because it has a unique transition for each state and symbol,
and therefore has only a single current state [5].

2.1. Conducting an experiment. In practice, 4 fuzzy
search algorithms were compared: the standard Damerau-
Devenshtein algorithm and 3 different editing distance
calculators TreeAutomaton, HashAutomaton, and Table-
Automaton. For each algorithm, software implementations
were written in the C++ programming language.

2.2. TreeAutomaton. The initial stage is the construc-
tion of a non-deterministic automaton in the form of
a prefix tree. To build an automaton that would accept
words that differ from the template by no more than
a given distance, it is necessary to go through all possible
variants of operations on the template, the total cost of
which is less than the maximum allowed. Step-by-step
description of the algorithm:

1. As long as the queue is not empty, let’s take the
first element from the queue and process it. Each queue
element corresponds to a combination of the current charac-
ter from the pattern and the remaining edit distance.

2. If the state index is equal to the word length, let’s
note the current node as the final state [6].

3. It is provided that the total score with the insertion
value does not exceed the maximum allowable distance,
let’s create a new node in the tree with the insertion
symbol and add a new state to the queue.

4. Let’s try to create new states with different ac-
tions: insertion, deletion, transposition and replacement
of symbols. If the total current penalty amount does not
exceed the maximum possible editing distance, then let’s
add such a state to the queue and create it.

In Fig. 2, it is possible to see an example and the result
of the construction of the NFA for the template «ab» with
a maximum editing distance of 1. The states that are the
nodes of the tree are marked with a circle. The double
circle is responsible for the final states of the automaton.
The symbol «?» any character is marked, including «a» and
«b», initial state is 0. This automaton accepts any words
that have an edit distance to the pattern «ab» less than
or equal to 1. For example, for the input word «ba» edit
distance is 1 because one transposition is enough to turn it
into an «ab» pattern. When reading the first character «b»
let’s find ourselves in the states marked as 10 and 1. Af-
ter that, when reading «a» let’s go to states 11 and 2.
State 11 is final, so the word is accepted by the automaton.
To calculate the distance, when building the automaton,
it is necessary to store in each node of the tree a value
equal to the sum of the distances of the previous opera-
tions performed in order to reach this node. This value
represents the editing distance of the sequence.

Fig. 2. NFA for template «ab» and maximum editing distance 1

Since NFA simulation is a costly process, the next
step is to determinize it to ensure fast word verification.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

29TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

The goal of determinism is that each state of the automaton
has only one transition for each symbol [5]. To achieve
this, let’s combine for each state a universal transition
with its other transitions. Thus, let’s avoid the need to
go to several states at the same time. After determiniza-
tion, the result of NFA can be seen in Fig. 3, where the
symbol «?» is responsible for all symbols except those for
which there are already transitions from this state. For
example, for state 0, the character «?» is responsible for
all characters except «a» and «b».

Fig. 3. DFA for template «ab» and maximum editing

distance 1

Automatic word checking is very simple. In the cycle,
let’s go through each character of the input word in paral-
lel, updating the current state in which we are. If a non-
existent transition is hit, the iteration terminates because
the input word has an editing distance to the template
greater than the maximum allowed.

2.3. HashAutomaton. In this solution, there is no bind-
ing to the tree structure. Let the cost of each operation,
be it deletion, insertion, transposition, or replacement, be
the same and equal to one, which allows building a more
structured automaton that speeds up the construction and
determinization of the NFA. Each state of the automaton
corresponds to a certain configuration of the number of
processed symbols of the template and the number of edit-
ing operations applied at the same time. Each transition
between states corresponds to a specific operation. States
that have completely processed the template are final.
Fig. 4 shows the NFA for the pattern «ab» and a maxi-
mum edit distance of 1.

Fig. 4. HashAutomaton NFA for pattern «ab» and maximum edit

distance of 1

The first number in the state name corresponds to
the number of processed characters of the pattern, and
the second number corresponds to the edit distance. «*»
denotes transitions accepting any symbol, «ε» denotes zero
transitions, the initial state is «0 0» [7].

Next, it is necessary to build a DFA, which is much
more convenient and effective for the word verification
process. To construct a DFA, it is necessary to go through
all transitions of the NFA, creating new states in the DFA
for each unique combination of states of the NFA. After
the NFA determinism is complete, the automaton is ready
to check words. Word verification is quite similar to the
prefix tree-based automaton verification discussed earlier.

2.4. TableAutomaton. Based on the automaton described
in [8], let’s modify the given implementation to support
unicode character transposition operations. The NFA un-
derlying TableAutomaton is no different from the NFA in
HashAutomaton. The main advantage of TableAutomaton
is the absence of the need to explicitly construct the
automaton. Having a template and the maximum editing
distance, the machine can immediately start checking words.
The main observation underlying TableAutomaton is that
the result of deterministic NFA in HashAutomaton for
words like «free» and «tree» will be the same, but will
be different from DFA for the word «pain» or «soon».
If to rewrite the words, giving each unique symbol its own
number in order, the connection between these words will
be obvious. Let: free = 1233 = tree, pain = 1234, soon = 1223.
That is, the set of unique NFA states that can be obtained
from one state depends only on the currently checked
symbol and occurrences of this symbol in the template,
starting from the shift at which this state is located.

To reflect this fact, the concept of a characteristic vector
is introduced, which is a bit mask, where the value in a posi-
tion is equal to 1 only when the symbol of the template at
that position is equal to the symbol being checked. However,
only characteristic vectors of length 2·d+1, where d is the
maximum editing distance, are important for the transition
between states. Given this, it is necessary to pre-calculate
all possible transitions and all possible states for any pattern
at the beginning of the program. The algorithm is similar
to NFA determinism, but instead of template symbols, cha-
racteristic vectors should be used and the resulting unique
state configurations should be saved in the transition table.

It is worth noting that this approach is practical only
for small values of the maximum editing distance, since
the size of the table grows exponentially with its value,
since there are unique values of the characteristic vector,
where d is the maximum distance [7].

When checking a word for each symbol, a characteristic
vector is calculated for a given template, where, depending
on its value and the current state, the next state of the
automaton is selected from the table of all transitions.
At the end of all incoming characters, it is necessary to
check whether the current state is final.

3. Results and Discussion

As part of the study, all 4 algorithms were tested for
correctness of work, and performance tests for various
input data were developed and analyzed.

To check the correctness, a program was developed that
would use a dictionary of words and compare the edit

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

30 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

distance calculated by one current solution to the edit dis-
tance calculated using a ready library Damerau-Levenstein
algorithm. The principle of the test: a dictionary of all
possible words in English is read and the test is started for
each of the solutions. Within the test, the editing distance,
pattern, and words to be tested are randomly selected. The
editing distance is then checked using the library algorithm
and automata-based solutions. All 4 algorithms successfully
passed the test on the correctness of work on a dictionary
containing 370 thousand English words.

To check the performance, tests were carried out, which
determine the time of building the automaton and the time
of checking the word for each of the solutions. It is necessary
to calculate the time for two variants of checks, matches
and non-matches, that is, words that are not accepted by
machines. In addition to the time spent, the amount of
memory used is an important criterion for evaluating the
algorithm [9]. Therefore, it is necessary to measure the amount
of RAM occupied by each machine. The google::benchmark
framework was used to conduct and create tests.

Construction time and memory measurements were made
only for TreeAutomaton and HashAutomaton, since the
TableAutomaton transition table is already written in the
program. In Fig. 5 shows graphs showing the dependence
of the construction time on the length of the template
for different values of the maximum editing distance. For
TreeAutomaton, it was only possible to construct automata
for distances up to 3, since larger distances take significant
construction time and consume a lot of memory.

Fig. 6 shows graphs that reflect the dependence of the
maximum amount of used memory on the length of the

pattern. As the maximum editing distance increases, the
required amount of memory increases. Time and memory
for TreeAutomaton grow very quickly. Let’s note that larger
templates and editing distances require more calculations
and consume more memory. However, HashAutomaton
proved to be more efficient in terms of construction time
and memory usage compared to TreeAutomaton. This is
due to the basic complexity of their automaton structures
and the way they are implemented.

As the pattern size increases, the time also tends to
increase. The time for TreeAutomaton and TableAutomaton
is significantly affected by the maximum editing distance.
In the first case, this is due to the use of a data struc-
ture of an associative container based on trees, which
asymptotically has a logarithmic search time, but with
a small number of elements it works faster than a similar
container in the C++ language based on hashing [10].
In the second case, this is due to the need to calculate
the characteristic vector for each character of the line.
This is due to the fact that a characteristic vector must
be calculated for each character to verify a word. To speed
up this process, it is possible to use SIMD-based optimi-
zation of processor instructions.

The result of the general test is shown in Fig. 7.
This test was conducted on a dictionary consisting of
370,000 English words. Each of the solutions works faster
than a simple approach using the Damerau-Levenshtein
algorithm. The lack of explicit automaton construction does
not provide a significant advantage to TableAutomaton,
since the construction of automata occurs only once at
the beginning.

a

b

Fig. 5. Graph of the dependence of construction time on the length of the template:
a – TreeAutomaton; b – HashAutomaton

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

31TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

As a result of the study, recommendations were made
for the development of a fuzzy search system.

With small permissible editing distances of 1–2, it is
possible to use TreeAutomaton. TableAutomaton is best
for medium edit distances of 3–4, and HashAutomaton
for long search terms.

It is worth noting that the construction of the auto-
maton makes sense when the size of the text data is more
than 5000 words, otherwise it is better to use the simple
Damerau-Levenshtein algorithm.

The conditions of the martial law in
Ukraine did not affect the obtained re-
sults in any way, because the execution
time of the algorithm depends only on
the number of operations that it needs
to perform.

However, the war in Ukraine has af-
fected the search queries that users make
more often and the information that is
stored in cloud data stores. There was
much more information related to the
situation at the front.

Other modifications of fuzzy search
algorithms are planned in the future. For
example, it is possible to add the use of
character similarity tables so that charac-
ters that are next to each other on the
keyboard, or that are semantically simi-
lar, are more similar and appear higher in
search results than unrelated characters.

4. Conclusions

In this paper, a comparison of fuzzy search algorithms
based on the Damerau-Levenshtein distance was made.
The usual Damerau-Levenshtein algorithm and 3 algo-
rithms based on finite state machines were compared.
In Section 2, several software implementation options were
developed and described, including TreeAutomaton, Hash-
Automaton, and TableAutomaton. Tests were conducted
to check the correctness of the implementation and to

a

b

Fig. 6. Graph of the dependence of the maximum amount of used memory on the length of the template:
a – TreeAutomaton; b – HashAutomaton

Fig. 7. Results of the general test

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

32 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(72), 2023

ISSN 2664-9969

evaluate the performance, which includes: the construc-
tion of the automaton, word verification, and general tests
that check the speed of the automata in comparison with
the trivial approach.

Based on the conducted tests and analysis of solutions,
it can be concluded that all developed solutions based on
finite state machines work faster than a simple approach
using the Damerau-Levenshtein algorithm for searching text
data of more than 5000 words. This is explained by the
fact that additional time is spent on building automata,
while the usual algorithm immediately starts searching.
On a dictionary with 370,000 words and maximum edit-
ing distances from 1 to 3, each machine showed results
5–9 times faster.

HashAutomaton is recommended for general use because
the amount of memory used is significantly less for large
edit distance values, and the speed of word validation
is not significantly different from TreeAutomaton. This
machine turned out to be the most versatile.

TreeAutomaton is recommended for situations where
you need a different cost for edit operations, or for an
edit distance between 1 and 2. At small edit distance
values, it shows the fastest performance.

TableAutomaton is recommended for situations where
the search term changes frequently, as it does not need
to be constructed and determinized for any pattern and
small edit distance values. The main speed limitation of
this machine is the need to calculate the characteristic
vector for each input symbol, which can be accelerated by
5–10 % by using SIMD instructions for its calculation.
However, this solution is not universal, as it requires the
use of a central processor with support for such instructions.

Conflict of interest

The authors declare that they have no conflict of inte-
rest in relation to this study, including financial, personal,
authorship, or any other, that could affect the study and
its results presented in this article.

Financing

The study was conducted without financial support.

Data availability

The manuscript has no associated data.

References

1. Navarro, G. (2001). A guided tour to approximate string match-
ing. ACM Computing Surveys, 33 (1), 31–88. doi: https://doi.org/
10.1145/375360.375365

2. Schulz, K. U., Mihov, S. (2002). Fast string correction with
Levenshtein automata. International Journal on Document Analy-
sis and Recognition, 5 (1), 67–85. doi: https://doi.org/10.1007/
s10032-002-0082-8

3. Boytsov, L. (2011). Indexing methods for approximate dictio-
nary searching. ACM Journal of Experimental Algorithmics, 16.
doi: https://doi.org/10.1145/1963190.1963191

4. Damerau–Levenshtein distance. Available at: https://www.geeks-
forgeeks.org/damerau-levenshtein-distance/

5. Sn el, V., Keprt, A., Abraham, A., Hassanien, A. E. (2009).
Approximate String Matching by Fuzzy Automata. Man-Machine
Interactions. Berlin, Heidelberg: Springer, 281–290. doi: https://
doi.org/10.1007/978-3-642-00563-3_29

6. Baeza-Yates, R., Navarro, G.; Hirschberg, D., Myers, G. (Eds.)
(1996). A faster algorithm for approximate string matching.
Combinatorial Pattern Matching. CPM 1996. Lecture Notes
in Computer Science. Vol 1075. Berlin, Heidelberg: Springer.
doi: https://doi.org/10.1007/3-540-61258-0_1

7. Girijamma, H. A., Ramaswamy, H. A. V. (2009). An extension
of Myhill Nerode Theorem for Fuzzy Automata. Advances in
Fuzzy Mathematics, 4 (1), 41–47.

8. Ramon Garitagoitia, J., Gonzalez de Mendivil, J. R., Echanobe, J.,
Javier Astrain, J., Farina, F. (2003). Deformed fuzzy automata
for correcting imperfect strings of fuzzy symbols. IEEE Transac-
tions on Fuzzy Systems, 11 (3), 299–310. doi: https://doi.org/
10.1109/tfuzz.2003.812682

9. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2022).
Introduction to Algorithms. MIT Press, 1312.

10. Mihov, S., Schulz, K. U. (2004). Fast Approximate Search in
Large Dictionaries. Computational Linguistics, 30 (4), 451–477.
doi: https://doi.org/10.1162/0891201042544938

*Kyrylo Kleshch, Assistant, Postgraduate Student, Department
of System Design, National Technical University of Ukraine «Igor
Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://
orcid.org/0009-0006-8133-3086, e-mail: kleshch.kirill@gmail.com

Volodymyr Shablii, Department of System Design, National Technical
University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Kyiv, Ukraine, ORCID: https://orcid.org/0009-0004-5113-3572

*Corresponding author

