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ABSTRACT

The extant literature proposes an option-based hedging mechanism for airlines in a parallel alliance 
to transfer bumped passengers to their alliance partner’s flight. This paper extends this literature by 
conducting strategic analyses and developing a two-stage simulation-based algorithm to identify the 
best strategy for applying the hedging mechanism. Specifically, the best strategy refers to the best 
number of options for the allied carriers to transact. The authors show that there exists a robust result 
of the best number of options, and it is obtained under the objective of maximizing alliance-wide 
revenue. The result of this paper can provide direct guidance to the management of airlines on the 
best practice of hedging ex-post overbooking risks and matching supply with demand.
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INTRODUCTION

Overbooking refers to airlines intentionally overselling the actual number of seats on an aircraft 
(Coughlan, 1999). Airlines use overbooking as a revenue management instrument to minimize lost 
revenue due to passenger cancellations and no-shows (Rose, 2016). Although having the potential to 
increase capacity utilization on a flight efficiently and thus bring extra revenue to airlines, overbooking 
introduces a new risk that passengers in excess of the total capacity show up for a flight but are denied 
boarding because of oversales (Smith et al., 1992). After a temporary pause in the pandemic year 
2020, air travel started to recover, and at the same time, overbooking has become common again. In 
2021, around 183,000 passengers were bumped from oversold flights of the largest U.S. air carriers, 
up from as few as 81,000 in 2020 (U.S. Department of Transportation, 2022). Specifically, Figure 1 
shows the number of passengers denied boarding voluntarily and involuntarily from 2012 to 2021. 
Around 11,000 passengers holding confirmed reservations were involuntarily bumped from oversold 
flights in 2021. Note that this figure only covers domestic and outbound international flights of ten 
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U.S. airlines. Considering the enormous total passenger volume worldwide, the risk of oversales 
inherently brought by overbooking could be a big problem.

In the case of denied boarding due to overbooking, the airline must compensate the bumped 
passengers. Depending on how late the passenger arrives at their destination, the compensation 
payment can be costly (Oh & Su, 2022), let alone the reputational risk and loss of goodwill that are 
detrimental to the airlines’ long-term survival and development (Dalalah et al., 2020; Nazifi et al., 
2021; Wangenheim & Bayón, 2007; Zhang & Chen, 2013). On the other hand, airlines cannot avoid 
the risk of undersale, which occurs when they do not overbook flights enough, resulting in empty 
seats. The consequences of undersale can be equally unaffordable because the value of unsold seats 
will diminish upon flight departure. This issue will affect the ability of airlines to fully utilize their 
finite capacity and absorb the high fixed cost of operating a flight (Guo et al., 2016). Overall, it is 
probable that the ex-ante optimal overbooking policy ends up in ex-post oversale or undersale risk, 
even though overbooking per se is a risk-hedging tool used by airlines.

In a previous study, Wang and Fung (2014) proposed an option-based passenger transfer 
mechanism to address the issue of oversale and undersale inherent in overbooking for parallel 
airline alliances. Their work is the only one that studies mechanism design for airline alliances 
to reduce the ex-post overbooking risks. As there has been no further research aiming to 
extend the applicability of their mechanism, two questions remain unexplored. First, does the 
best strategy for applying the option-based mechanism exist? Second, if so, how to identify 
such a best strategy? These two unanswered questions drive the authors’ interest, leading to 
the current study.

The remainder of this paper is organized as follows. Section 2 reviews the pertinent literature 
on airline overbooking. Section 3 presents a concise summary of the hedging mechanism 
showing the model formulation, parameter setting, and simulation procedures. Section 4 offers a 
comprehensive discussion of the simulation results and introduces a two-stage simulation-based 
algorithm to identify the best strategy for applying the hedging mechanism. Finally, Section 5 
concludes this work.

Figure 1. Number of passengers denied boarding by the largest U.S. air carriers from 2012 to 2021, by type (in thousands) (U.S. 
Department of Transportation, 2022)
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LITERATURE REVIEW

The existing literature related to overbooking can be broadly divided into two categories. The first 
category focuses on mathematical and technical advancement in optimizing the ex-ante airline 
overbooking decision. The second category looks for ways to reduce the ex-post negative impacts 
due to overbooking.

The ex-ante overbooking decision aims to find an optimal trade-off between the expected 
revenue loss due to seat vacancies and the cost of oversale. The authors refer readers to Klein et al. 
(2020) for a review of recent research developments in revenue management, including overbooking 
studies that explore this optimality. While most scholars have examined overbooking problems in 
independent environments, Huang et al. (2013) and Chen and Hao (2013) considered the impact of 
carriers’ collaboration in determining optimal overbooking policies.

Though the current techniques for determining the optimal overbooking policies are advanced, 
the ex-post risks of overbooking are inevitable. As Talluri & Ryzin (2005) pointed out, the biggest 
challenge in overbooking is managing the negative consequences of denying service. Therefore, the 
second category of the literature addresses this challenge from a different perspective by examining 
effective ways to mitigate the ex-post risks of overbooking. For example, Pizam (2017) discussed 
the causes of the United Airlines (UA) Flight 3411 incident and outlined lessons learned that can 
be applied to all sectors using or planning to use overbooking. Ma et al. (2019) used Twitter data 
to analyze crisis response and communication in the context of UA’s overbooking incident. They 
discussed some best practices in crisis communication that can help mitigate overbooking risks 
and avoid crisis escalation. Recently, Dalalah et al. (2020) studied a voluntary overbooking model 
where some customers are willing to purchase a lower price ticket but under overbooking terms. As 
information is fully disclosed on the possible denied boarding consequences, passengers cooperate 
in the overbooking execution process so airlines can minimize potential negative consequences. 
Another work by Nazifi et al. (2021) proposed a practice to handle flight overbooking proactively. 
They demonstrated that if passengers can be informed about undesirable events before leaving for 
the airport, airlines can reduce negative electronic word-of-mouth (eWOM) and the cost of bumping.

Wang and Fung (2014) first addressed the issue of mitigating ex-post risks of overbooking in an 
airline alliance setting. They incorporated the concept of call options from the finance literature and 
propose an option-based mechanism to transfer bumped passengers among allied airlines to manage 
the negative impacts of bumping. An analytical model was built to calculate the net benefit that 
can be obtained by the allied airlines. Through simulation analyses, they showed that the proposed 
mechanism could generate mutual benefits for allied carriers under many practical conditions and 
thus reduce the ex-post risks of overbooking to a large extent.

This paper extends Wang and Fung (2014) and conducts a systematic analysis to examine 
whether the best strategy for applying the option-based mechanism exists. It also proposes a two-
stage simulation algorithm for identifying such a best strategy, which refers to the best number of 
options the allied carriers should transact with each other. This work enriches the existing literature 
that addresses the potential adverse effects of overbooking. It also provides comprehensive guidance 
to airline management on the best practice of hedging ex-post overbooking risks and matching supply 
with demand.

METHODOLOGY

Review of the Hedging Mechanism
In this section, the authors briefly review how the mechanism proposed by Wang and Fung (2014) 
works in flight booking. On the route from City A to City B, Airlines I and J enter into a code-sharing 
agreement and form a parallel alliance. The two allied airlines play the roles of the operating carrier 
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and the ticketing carrier, respectively, for flight i and swap their roles for flight j (In an airline alliance, 
an operating carrier is an airline that provides the aircraft, the crew, and the ground handling service. 
A ticketing carrier, also known as a marketing carrier, is an airline that sells tickets for a flight but does 
not operate it.) Both flights are overbooked, and the overbooking policy of each flight is determined by 
its operating carrier. The two flights depart successively, with flight j taking off shortly (e.g., within 
one hour) after flight i. When passengers are bumped from flight i, at least some can be transferred 
to flight j according to the following option-based mechanism.

Figure 2 shows the decision-making interactions between Airline I and J before and during the 
booking process. The authors refer readers to Section 3.1 in Wang and Fung (2014) for detailed 
explanations of the airlines’ actions and motivations. In short, by purchasing call options from Airline 
J, Airline I obtains the right to purchase seats from flight j at a future time and a discounted price. 
This option-based approach allows Airline I to transfer bumped passengers from flight i to flight j at 
a lower cost and thus offers an innovative solution to manage the negative impacts of bumping. On 
the other hand, Airline J may increase its revenue by selling options. As a result, a win–win situation 
can be achieved for both airlines.

Model Formulation
To analyze the benefit brought by the hedging mechanism, Wang and Fung (2014) classified the 
customers of flight i into three types. Type I (disloyal) customers would choose flights offered by other 
alliances if they cannot board flight i. Type II (quasi-loyal) customers would choose flights offered 
by other airlines in the same alliance if getting bumped from flight i. Being the most loyal group, 
Type III customers would always choose Airline I’s flights no matter whether they can fly on flight i.

Applying the same customer classification, the analyses proceed based on the benefit calculation 
used in Wang and Fung (2014). Table 1 shows the tabulated variable definitions. Four relevant 
equations are reproduced from Equations 7, 8, 10, and 3 in their paper, and the first three calculate 
the net benefit obtained by Airline I, J, and the alliance, respectively.

Figure 2. Decision-making interaction between Airlines I and J
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Table 1. Variable definitions

Variable Definition

n
m The seat capacity of flight m, m = i, j

α
m The number of overbooked passengers on flight m, m = i, j

λ
1

, �λ
2

The share of Type I and Type II customers within n
i i
+α , respectively

SH
mc

A binary variable coded 1 if customer c
m

 shows up for flight m (coded 0 otherwise), m = i, j

BP
mc

A binary variable coded 1 if (given that c
m

 shows up for flight m) customer c
m

 is denied a seat on flight 
m (coded 0 otherwise), m = i, j

T
ic

A binary variable coded 1 if (given that c
i

 is bumped for flight i) customer c
i

 is transferred to flight j 
(coded 0 otherwise)

COST
ic The amount of monetary and non-monetary cost that Airline I needs to pay when bumping a passenger c

i
 

from flight i

P
ic
' The ticket price that customer c

i
 would have paid for a seat on a future flight of Airline I

P
jc

The ticket price of flight j for customer c
j

L
jc

A binary variable coded 1 if (given that c
j

 shows up but bumped by flight j) customer c
j

 is bumped due 
to reservation for options (coded 0 otherwise)

x The option price of an option

k The exercise price of an option

N
o The total number of options Airline I purchased from Airline J

B Net
i ( ) The overall net benefit obtained by Airline I from the hedging mechanism

B Net
j ( ) The overall net benefit obtained by Airline J from the hedging mechanism

B Net( ) The total net benefit obtained by the alliance from the hedging mechanism
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Equation 1 shows that the overall net benefit obtained by Airline I, B Net
i ( ) , mainly comes 

from the amount of COST
ic

 saved by transferring bumped passengers. The transfer, however, is 
realized at the expense of purchasing and exercising options. The last term in Equation 1 states 
that B Net

i ( )  will decrease by the reduced revenue P
ic
'  for a future flight of Airline I for each 

Type III passenger transferred. One condition needs to be satisfied that, as shown in Equation 
4, the total number of transferred passengers cannot exceed the total number of options Airline 
I purchased from Airline J.

Equation 2 shows that the overall net benefit obtained by Airline J, B Net
j ( ) , includes the 

revenue of selling and exercising options. However, the revenue gain is reduced by the possible lost 
ticket revenue due to seat reservations for options. When the lost ticket revenue is smaller than the 
revenue of selling options, Airline J can earn a positive profit.

The overall net benefit obtained by the alliance through the option-based mechanism should be 
smaller than the sum of the net benefit received by Airline I and Airline J. The difference is caused 
by Type II (quasi-loyal) customers on flight i. If flight i transfers a Type II customer c

i
 to flight j, 

the cost saving for flight i is realized at the expense of reduced revenue for a future flight of Airline 
J. From the perspective of the alliance, the profit derived from Type II customers should be adjusted 
by the amount that traveler c

i
 would have paid for a seat on a future flight of Airline J.

Note that Equation 3 does not contain x  and k . The option price and exercise price are inter-
payment between the two alliance partners. Those option costs paid by Airline I will be offset by 
revenue received by Airline J. The first term in B Net( )  represents the monetary and non-monetary 
cost saved from the transferred passengers of flight i. It is the main reason the proposed mechanism 
can benefit the alliance, and this portion of the benefit is not affected by passenger type. However, 
such benefits must associate with costs, which include the reduced revenue for future flights of Airline 
J caused by Type II (quasi-loyal) customers on flight i, the reduced revenue for future flights of Airline 
I caused by Type III (loyal) customers on flight i, and the lost potential ticket revenue of Airline J 
due to reservation for options.

Parameter Setting
Given the rationale of the mechanism, a natural question is how many options the allied airlines 
should transact with each other. When applying the hedging mechanism, individual airlines are also 
interested in maximizing their benefit under various conditions. The authors carry out the following 
analyses to answer the above questions. To capture the stochastic nature of random variables B Net

i ( ) , 
B Net
j ( )  and B Net( ),  simulation experiments are used so that not only the means but also the 

variances of random variables can be investigated.
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The authors follow the parameter specifications justified in Suzuki (2006) and Wang and Fung 
(2014) for similar items. For unique parameters in this paper, justifications are provided. Table 2 
shows the simulation input, where N(µ, σ2) and B(1, p) represent a normal distribution (with mean µ 
and standard deviation σ) and a Bernoulli distribution (with parameter p), respectively.

Customer Type

In each experiment, the proportion of Type III customers within (n
i i
+α ) is (1

1 2
− −λ λ ). The 

equivalent share of the three types of customers aims to eliminate the effect of any potentially dominant 
customer type.

Overbooked Travelers on Flight j (α
j
)

From the perspective of the alliance, the hedging mechanism is beneficial for both carriers in two 
situations. Under the assumption that the two flights have equivalent capacity (200 seats), the first 
situation arises when the demand of flight j has a smaller expected value than that of flight i. In 
this case, it is more likely that flight j has vacancies when flight i gets excessive passenger(s). This 
can be represented by Setting 1 of α

j
. When the number of overbooked travelers on flight i lies 

between 20 and 40 (10% and 20% of the total capacity, respectively) 99% of the time, the number 
of overbooked travelers on flight j will lie between 10 and 30 (5% and 15% of the total capacity, 
respectively) most of the time.

The second situation is when the demand of flight j has larger volatility than that of flight i. This 
condition also results in a higher possibility that flight j has vacancies when flight i gets excessive 
passenger(s). It is represented by Setting 2 of α

j
, in which case the number of overbooked travelers 

on flight j will lie between 15 and 45 (7.5% and 22.5% of the total capacity, respectively) 99% of the 
time. The two settings of α

j
 can be seen as realistic boundary cases where the hedging mechanism 

becomes most beneficial. The following simulation procedures are designed to examine all the possible 
scenarios falling between the boundaries for the two situations discussed above.

Table 2. Simulation parameter specifications

Parameter (m = i, j) Value Parameter (m = i, j) Distribution

n
m 200 α

i N(30, 3.52)

λ
1

* 0.33 α
j

–Setting 1 N(20, 3.52)

λ
2

* 0.34 α
j

–Setting 2 N(30, 5.82)

COST
ic

N(300, 402)

P
mc

 (refundable) N(311, 462)

P
mc

 (non-refundable) N(165, 252)

SH
mc

 (refundable) B(1, 0.6)

SH
mc

 (non-refundable) B(1, 0.926)
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Simulation Procedures

Part 1: For α µ σ
j j j
N~ , 2( ) , fix σ

j
to  3 5.  and systematically change µ

j
 from 20 to 30 in the 

increment of 1 (11 values). For each µ
jt
t� , , , � ,� � � � �= …( )1 2 11  calculate the expected net benefit for 

both flights and the alliance when N
o

 is from 1 to 10. Specifically, the procedures of calculating 
the net benefit are the same as the approach described in Section 4.1 of Wang and Fung (2014).

Part 2: For α µ σ
j j j
N~ , 2( ) , fix µ

j
� �= 30  and systematically change σ

j
 from 3.5 to 5.8 in the 

increment of 0.1 (24 values). For each σ
js
s� , , , ,� � � � �= …( )1 2 24  calculate the net benefit for both 

flights and the alliance when N
o

 is from 1 to 10.

RESULTS AND DISCUSSION

The Best Number of Options

Table 3 presents the first case of simulation Part 1 when α
j
N~ , .20 3 52( ) . The values of (x, k) are 

set arbitrarily for illustration purpose. The expected net benefits for Airline I (E B Net
i

[ ]( ) ), Airline 

J (E B Net
j

[ ]( ) ) and the Alliance (E B Net( )



 ) are obtained by taking an average of 1,000 experiment 

results, where each experiment represents one set of flight departures (i.e., one departure of flight i 
and one subsequent departure of flight j).

It can be observed that the best number of options N
o
*  is different when the ultimate objective 

changes from maximizing the benefit of the alliance to maximizing the benefit of an individual airline. 
For example, when maximizing E B Net( )



 , No

*  is 7. However, if maximizing E B Net
i

[ ]( ) , N
o
*  

changes to 5; and if maximizing E B Net
j

[ ]( ) , N
o
*  changes to 10. Similar pattern remains for other 

Table 3. Expected net benefit for Airline I, Airline J, and the alliance: Case illustration (μj1 = 20, x = 10, k = 110)

N
o E B Net( )





E B Net
i

[ ]( ) E B Net
j

[ ]( )

1 124.896 79.414 65.033

2 207.122 132.291 118.239

3 248.296 149.819 151.672

4 291.692 173.787 187.932

5 329.197 180.381 230.582

6 320.161 173.074 222.723

7 343.798 172.879 257.604

8 305.714 142.634 245.767

9 323.916 150.267 254.314

10 340.732 162.136 265.438
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cases when µ
j
 takes other values, when σ

j
 takes other values, and even when the values of (x, k) 

take other combinations.
By completing simulation Part 1, results of E B Net( )



 , E B Neti

[ ]( )  and E B Net
j

[ ]( )  for the 

11 cases of µ
j
 are obtained. The following presents the summary. In particular, Figures 3–5 show 

the expected net benefit for Airline I, Airline J, and the alliance corresponding to each µ
j
 value 

calculated under the objective of maximizing E B Net( )



 , E B Neti

[ ]( )  and E B Net
j

[ ]( ) , 
respectively. Correspondingly, Tables 4–6 summarize the numerical values. Consistent with 
intuition, there is a trade-off between maximizing E B Net

i ( )



  and maximizing E B Net

j ( )



 . 

When maximizing E B Net
i ( )



 , E No[ ]*  tends to be smaller than that obtained under the other two 

Figure 3. Benefit calculated under the objective of maximizing E[B(Net)]

Figure 4. Benefit calculated under the objective of maximizing E[Bi(Net)]
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maximization objectives. In this case, E B Net
j ( )



  is lowered because Airline J earns less revenue 

from selling and exercising options. When maximizing E B Net
j ( )



 , E No[ ]*  tends to be the largest 

possible value of N
o

 (10 in this simulation experiment). It is certainly to the detriment of 
E B Net

i ( )



  since Airline I needs to pay more to buy unnecessary options which will never be 

exercised. This trade-off effect indicates that the best number of options should be selected under 
the objective of maximizing E B Net( )



 , where E B Net( )



  is the largest and the expected net 

Figure 5. Benefit calculated under the objective of maximizing E[Bj(Net)]

Table 4. Benefit calculated under the objective of maximizing E[B(Net)]

µ
j

N
o
* E B Net

i
[ ]( ) E B Net

j
[ ]( ) E B Net( )





20 7 179.6 247.3 343.7

21 8 171.4 251.7 336.4

22 7 175.3 227.3 319.5

23 7 181.5 212.3 306.3

24 8 166.5 199.6 281.2

25 7 166.9 162.7 248.5

26 7 172.6 127.6 216.6

27 7 167.9 97.1 184.8

28 7 171.3 64.9 156.6

29 7 163.8 39.5 123.4

30 6 175.1 -1.2 95.3
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Table 5. Benefit calculated under the objective of maximizing E[Bi(Net)]

µ
j

N
o
* E B Net

i
[ ]( ) E B Net

j
[ ]( ) E B Net( )





20 5 196.8 224.3 335.2

21 4 190.4 192.5 305.6

22 4 192.5 191.4 303.0

23 5 192.0 184.0 292.4

24 4 187.3 147.2 258.1

25 4 188.1 128.2 236.7

26 5 187.2 104.0 209.3

27 4 196.0 66.1 183.5

28 5 192.5 39.5 150.6

29 4 191.5 5.1 118.8

30 5 187.7 -19.1 90.3

Table 6. Benefit calculated under the objective of maximizing E[Bj(Net)]

µ
j

N
o
* E B Net

i
[ ]( ) E B Net

j
[ ]( ) E B Net( )





20 10 135.1 266.1 318.6

21 10 146.2 259.6 321.1

22 10 137.4 247.5 301.3

23 10 141.9 236.0 295.5

24 10 140.7 214.3 273.0

25 10 134.0 183.8 236.4

26 10 141.7 149.0 205.8

27 10 137.2 117.5 169.2

28 10 144.1 85.1 145.2

29 10 138.9 57.8 115.2

30 10 134.0 31.3 85.5
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benefit of the two individual airlines is comparable to that calculated under the objective of 
maximizing their own benefit, respectively.

A trade-off effect is observed that N
o
*  is obtained under the objective of maximizing E B Net( )



 . 

Let N argmax E B Net
o
* ,= ( )



  N argmax E B Net

oi i
* ,= ( )



  and N argmax E B Net

oj j
* = ( )



 , 

then E B Net E B Net
N No oi

( )



 > ( )



* *

 and E B Net E B Net
N No oj

( )



 > ( )



* *

, while E B Net
i No
( )



 *

 is 

comparable to E B Net
i Noi
( )



 *

 and E B Net
j No
( )



 *

 is comparable to E B Net
j Noj
( )



 *

.

As shown in Figure 3, when the objective is to maximize E B Net( )



 , the expected value of N

o
*  

is 7 and its standard deviation is 0.5. It is noticed that Airline J suffers a loss when flight j has the 
same demand pattern as flight i. In this case, it is less likely that flight i has vacancies when Flight i 
gets excessive passengers. As a result, flight j may need to sacrifice its own demand in most cases. 
Allied airlines will probably not choose the hedging mechanism under such a scenario. Therefore, 
the following analyses will ignore the case when µ

j
 equals 30.

By completing both simulations Part 1 and Part 2 for twelve x k,( )  combinations given in Table 
7 in Wang and Fung (2014), it is found that a robust result of E N

o
[ ]*  can be obtained. Table 7 provides 

a summary. All the values of E N
o

[ ]*  are 7 while most of σ N
o
*



  is small than 1. Due to demand 

uncertainty, there will never be a specific value of N
o
*  that fits every situation. However, the results 

in Table 7 well suggest an expected value of N
o
* . For example, when x  = 10 and k  = 110, the results 

Table 7. Results of E N
o
*



  and σ N

o
*



  for the twelve (x, k) combinations

Case x k

Simulation Part 1 

Fix σ
j

, change mean µ
j

Simulation Part 2 

Fix µ
j

, change σ
j

E N
o
*



 σ N

o
*



 E N

o
*



 σ N

o
*





1 22 95 7 1.2 7 1.0

2 17 100 7 1.3 7 0.7

3 13 105 7 0.8 7 0.8

4 10 110 7 0.5 7 0.9

5 8 115 7 0.6 7 0.8

6 7 120 7 0.8 7 0.8

7 6.25 125 7 0.6 7 1.0

8 5.75 130 7 0.8 7 0.8

9 5.5 135 7 0.7 7 1.0

10 5.35 140 7 0.6 7 0.8

11 5.25 145 7 0.7 7 0.6

12 5.2 150 7 0.8 7 0.8
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of (E N
o

[ ]*  = 7, σ N
o
*



  = 0.5) implies that the best number of options is 7 so that airlines can tackle 

the problem of overbooking in most of the time. With a consistent mean value and a small variation, 
the result of N

o
*  is considered robust.

Effectiveness of the Best Strategy
Table 8 shows the frequency of bumped cases out of 10,000 flights operated by Airline I. Nearly half of 
the time, flight i needs to bump passengers. For those flights with bumped passengers, the situation that 
no more than three passengers are bumped accounts for 60% of the cases. Nearly 98% of the time, the 
number of bumped passengers is less than or equal to 7. Figure 6 provides a graphical illustration. Recall 
that the value of E N

o
[ ]*  obtained in the above experiments is 7. It implies that by using the hedging 

mechanism, Airline I can tackle the problem of oversale 98% of the time. Meanwhile, the alliance as a 
whole can maximize its revenue. Interestingly, E N

o
[ ]*  is only 4, if the objective is to maximize Airline 

I’s individual benefit (see Figure 4). The optimal decision for Airline I to solve the problem of bumping 
in 75% of the time is sub-optimal for the alliance. Therefore, the hedging mechanism is suitable for airline 
alliances with a medium to a high level of cooperation, where allied carriers collaborate on a network basis 
and concern more about the long-term benefit obtained from the alliances. If focusing on route-by-route 
individual benefit, the two parties may hardly achieve an agreement to cooperate.

Impacts of the Option Cost on Airlines’ Benefit Sharing

The authors perform simulation experiments to show the impacts of x k,( )  on airlines’ benefit sharing 
when the allied carriers transact N

o
* � �= 7  options between each other. For simulation Part 1, it is 

Table 8. Frequency of bumped cases

Number of 
Bumped 

Passengers
Frequency Percentage (of 

Total)

Cumulative 
Frequency 
(Bumped)

Cumulative 
Percentage (of 

Bumped)

0 5,101 51.0%

1 1,061 10.6% 1,061 21.7%

2 1,032 10.3% 2,093 42.7%

3 894 8.9% 2,987 61.0%

4 665 6.7% 3,652 74.5%

5 483 4.8% 4,135 84.4%

6 330 3.3% 4,465 91.1%

7 323 3.2% 4,788 97.7%

8 61 0.6% 4,849 99.0%

9 42 0.4% 4,891 99.8%

10 5 0.1% 4,896 99.9%

11 2 0.0% 4,898 100.0%

12 0 0.0% 4,898 100.0%

13 1 0.0% 4,899 100.0%

Sub-total of bumped cases 49%

Total number of flights = 10,000 100%
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found that neither a higher option price x, nor a higher exercise price k is beneficial for Airline I, 
which is the option buyer. In these cases, Airline I shares less benefit from the overall benefit generated 
for the alliance, while Airline J shares more. This pattern holds for every x k,( )  combination. Cases 
1, 4, 12 in Table 7 are depicted in Figures 7– 9 to show the trend.

For simulation Part 2, the result is similar to that in Part 1 (see Figures 10–12). Airline I shares 
less benefit either when the option price x is higher or when the exercise price k is higher. Notably, 
Figure 10 shows that when option price x is too high, the variance of the individual airlines’ net 
benefit is substantial. It is due to the uncertainty of exercising an option. If the option prepayment is 
too high, whether or not an option is exercised will cause much difference in airlines’ revenue. 
However, when σ

j
 is larger, which means the demand of flight j has a more significant variation 

than the demand of flight i, the variance in airlines’ net benefit is reduced. It supports the argument 
that the hedging mechanism is more beneficial when there is a larger variation in the demand patterns 

Figure 6. Cumulative percentage of bumped cases

Figure 7. Benefit calculation for x k N
o

= = =( )22 95 7, , * , changing µ
j
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of the two flights. From the perspective of Airline I, it could be more certain that the options purchased 
will be exercised and bring benefits most of the time.

Two-Stage Simulation-Based Algorithm
The above analyses show the best number of options for a specific scenario of airline alliances. To 
obtain a generalizable solution, the authors develop the following two-stage simulation-based algorithm 
to identify the best number of options for applying the hedging mechanism.

Stage 1 of the algorithm consists of three steps and aims to find N
o
* , which brings the largest 

benefit for the alliance as a whole. The rationale is first to find a range of the possible number of 
bumped passengers for flight i, with a specified confidence level. This confidence level is set by 
airlines, and it reflects the risk attitudes of the alliance. The best number of options is then identified 
from the range.

Figure 8. Benefit calculation for x k N
o

= = =( )10 110 7, , * , changing µ
j

Figure 9. Benefit calculation for (x = 5.2,k = 150,N_o^* = 7), changing μj
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Figure 10. Benefit calculation for x k N
o

= = =( )22 95 7, , * , changing σ
j

Figure 11. Benefit calculation for x k N
o

= = =( )10 110 7, , * , changing σ
j

Figure 12. Benefit calculation for x k N
o

= = =( )5 2 150 7. , , * , changing σ
j
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1. 	 Calculate the mean N  and the standard deviation σ( )N  of the number of bumped passengers 
N  using historical data over a specified period:

N SH BP
c

n

ic ic

i

i i

= ={ }
+

∑
α

1 	

2. 	 Find the θ� %( )  confidence interval 0, �N

  such that the probability that the number of bumped 

passengers of future flight i  exceeds �N  is not greater than 1−( )θ . Different risk attitudes of 
the alliance will affect the selection of θ .

3. 	 For N N
o
∈ 


0, � , find the best number of options N

o
*  for the alliance and calculate E B Net

No
( )



 *

. 

If N
o
* > 0  and E B Net

No
( )



 >*

0 , proceed to Stage 2; otherwise, do not use the mechanism.

After identifying E N
o

[ ]* , decision-makers can proceed to Stage 2 (shown in Figure 13) to 
examine whether the individual airlines can obtain positive benefits when transacting N

o
*  options 

between each other under a specific circumstance. The underlying assumption is that airlines are 
willing to cooperate if they can both obtain positive net benefits from the collaboration arrangement. 
As different x k,( )  combinations will affect the share of benefits between the allied carriers, the 
option pricing will depend on the bargaining power of the two airlines. This decision should be 
made through negotiation.

Using the result in Table 3 again as an example, if a 99% confidence level is chosen, the 
corresponding confidence interval of the number of bumped passengers N  is [0, 8]. It is reasonable 
to identify N

o
*  within the range of [0, 8] because this interval is likely to include the number of 

bumped passengers of a future flight i in 99% of the cases. It is calculated that N
o
*  is 7, which brings 

the largest alliance-wide benefit of $343.798. In addition, Airline I and J can both obtain positive 

Figure 13. Simulation-based algorithm Stage 2
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benefit when transacting 7 options between each other. In this case, the best strategy for applying the 
option-based mechanism is identified.

CONCLUSION

Wang and Fung (2014) proposed an option-based hedging mechanism for airlines in a parallel alliance 
to transfer bumped passengers to their alliance partner’s flight. The current work extends the literature 
by conducting strategic analyses of the hedging mechanism. Specifically, the authors design and 
perform comprehensive simulation experiments to investigate the possible scenarios in which the 
mechanism benefits the alliance. From the analyses, it is found that there exists the best number of 
options N

o
*  that the allied carriers should transact with each other, and this value should be obtained 

under the objective of maximizing the alliance-wide revenue. The mechanism is effective since 
airlines can mitigate the ex-post overbooking risks in most cases.

As the hedging mechanism cannot be beneficial for both carriers under all circumstances, the 
authors also develop a two-stage simulation-based algorithm to identify whether the mechanism 
should be used; and, if yes, what the best number of options is. The algorithm can provide airlines 
with guidance and recommendations to identify the best strategy for applying the hedging mechanism. 
Using historical data and the demand forecast, airlines could follow the algorithm to obtain N

o
*  for 

their customized scenarios. It deserves noting that, for each scenario, airlines can freely adjust their 
risk attitudes and get different results of N

o
* .

This work is vital because it addresses the possible negative impact of the prevalent overbooking 
practice and provides answers to the unexplored questions in Wang and Fung (2014). The practical 
deliverable of the algorithm should be application software. The airline management can use the 
software, input the values of key variables based on the forecast, and obtain direct guidance on the 
best practice of hedging ex-post overbooking risks and matching supply with demand.
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