
Zhora, Victor; Synetskyi, Oleksandr

Article

Use of the PVS formal logic system in the method
of formal proof of security in the construction of
information security systems

Reference: Zhora, Victor/Synetskyi, Oleksandr (2021). Use of the PVS formal logic system in
the method of formal proof of security in the construction of information security systems. In:
Technology audit and production reserves 2 (2/58), S. 41 - 45.
http://journals.uran.ua/tarp/article/download/229539/229394.
doi:10.15587/2706-5448.2021.229539.

This Version is available at:
http://hdl.handle.net/11159/6997

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights[at]zbw.eu
https://www.zbw.eu/econis-archiv/

Standard-Nutzungsbedingungen:
Dieses Dokument darf zu eigenen wissenschaftlichen Zwecken
und zum Privatgebrauch gespeichert und kopiert werden. Sie
dürfen dieses Dokument nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben
oder anderweitig nutzen. Sofern für das Dokument eine Open-
Content-Lizenz verwendet wurde, so gelten abweichend von diesen
Nutzungsbedingungen die in der Lizenz gewährten Nutzungsrechte.

Terms of use:
This document may be saved and copied for your personal
and scholarly purposes. You are not to copy it for public or
commercial purposes, to exhibit the document in public, to
perform, distribute or otherwise use the document in public. If
the document is made available under a Creative Commons
Licence you may exercise further usage rights as specified in
the licence.

 https://zbw.eu/econis-archiv/termsofuse

mailto:rights@zbw-online.eu
https://www.zbw.eu/econis-archiv/
https://zbw.eu/econis-archiv/termsofuse

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

41TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

UDC 681.3.06
DOI: 10.15587/2706-5448.2021.229539
Article type «Reports on Research Projects»

USE OF THE PVS FORMAL LOGIC
SYSTEM IN THE METHOD OF
FORMAL PROOF OF SECURITY IN THE
CONSTRUCTION OF INFORMATION
SECURITY SYSTEMS

The object of research is the information and telecommunication system (ITS) and ensuring the protection of
information stored, processed and circulating in it. One of the most problematic areas in the creation of secure
ITS is the logical inconsistency and incompleteness of the information security policy. That is, a set of laws, rules,
restrictions, recommendations, etc., which regulate the procedure for processing information and are aimed at
protecting information from a certain set of threats. The reason for such problems is usually the absence of pre
design modeling of the information security system as a component of the information and telecommunications
system, which in the end causes the latter to be vulnerable.

An important prerequisite for the creation of a secure ITS is the construction of a subjectobject model of the
system, which makes it possible to determine the connections between objects, their features, to model information
flows and types of access to information and infrastructure resources. According to the existing clear, complete
and consistent subjectobject model of the ITS, it becomes possible to apply mathematical methods to modeling the
processes of its functioning, including for solving the problem of formal proof of security.

The paper considers the main idea of the method of formal proof of security, which can be used when building
information security systems or assessing the security of the created information and telecommunications system. It
is shown that for its implementation it is possible to use the methodology of automatic theorem proving. One of the
ways to solve this problem, which is proposed in the work, is the use of the PVS (Prototype Verification System) formal
logic system, which is widely used for writing specifications and constructing proofs. The main components of this
system are considered, as well as the possibilities of its use for automatic proof of statements about the impossibility
of unauthorized access under the conditions of a certain security policy. An example of the use of the PVS system
for the formal proof of the security of the system in the framework of the BellaLaPadula security policy is given.

Keywords: information and telecommunication system, information security system, security policy, method of
formal proof of security, specification language.

Victor Zhora,
Oleksandr Synetskyi

© The Author(s) 2021

This is an open access article

under the Creative Commons CC BY license

How to cite

Zhora, V., Synetskyi, O. (2021). Use of the PVS formal logic system in the method of formal proof of security in the construction of information security systems.

Technology Audit and Production Reserves, 2 (2 (58)), 41–45. doi: http://doi.org/10.15587/27065448.2021.229539

Received date: 16.12.2020

Accepted date: 22.02.2021

Published date: 30.04.2021

1. Introduction

The issues of protecting information and telecommunica
tion systems (hereinafter – ITS) from threats implemented
by attacks and/or activation of destabilizing factors [1] has
not lost its relevance over the past decades. A significant
set of algorithms for the implementation of threats is as
sociated with the exploitation of vulnerabilities that can
arise both in the configuration of information protection
mechanisms in the ITS, and in the ITS security policy.
Let’s understand the security policy as a set of laws, rules,
restrictions, recommendations, etc., which regulate the pro
cedure for processing information and aimed at protecting
information from a certain set of threats.

The mandatory elements of the information protec
tion system in the ITS are security policy and a set of
hardware and software components for information pro
tection, the use of which is conditioned and regulated
by the security policy.

The likelihood of the implementation of threats in the
ITS in the opposite way depends on the completeness,
correctness and reliability of the information protection
system, which can be formally verified before the attack
or the emergence of a destabilizing factor. The main stages
of the formal method of checking the information security
system for completeness and correctness are:

1) definition of objects and objectives of protection;
2) development of a security policy;

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

42 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

3) evidence that, subject to the security policy, the
implementation of threats is impossible;

4) definition of a set of security functions (services)
to support the security policy;

5) evidence that the set of security functions (services)
enforces the security policy.

The basis of the proofs, which are carried out in sections 3
and 5, is usually a set of theorems. However, carrying out
such an analysis for each system is difficult, expensive,
and requires highly qualified specialists.

Therefore, the issue of simplifying this procedure is rele
vant, especially in the context of widespread industrial use of
ITS modeling and the abovementioned approach to formal
proof of security. One of the possibilities for solving this
problem is the use of means of automating theorem proving,
the theoretical possibility of which has long been known [2, 3].
Automatic proof of the statement about the impossibility
of unauthorized access to the ITS would greatly facilitate
the process of building information security systems.

There are various approaches to the implementation of
automatic theorem proving, among which the PVS system
of formal logic is popular and widespread [4–6].

Thus, the object of the study is an information and
telecommunication system and ensuring the protection
of information stored, processed and circulated in it. The
purpose of the work is to demonstrate the applicability
of the PVS system within the framework of the method
of formal proof of ITS security.

2. Methods of research

To model ITS, the objectsubject approach is often
used, the essence of which is to select in the ITS sets of
passive objects O and subjects S (which, in turn, includes
a set of process objects Op and users U). After the for
mation of these sets, connections are established between
them and the rules of the security policy are formulated.

Let a security policy P be given. Let’s formulate the
following statement [7]: a protection system is considered
effective (good) if it reliably supports policy P, and ineffec
tive (bad) if it does not reliably support a certain policy P.
However, it is not defined here what a reliable policy support.
To clarify this definition, we use a hierarchical scheme.

Let the policy Р be expressed in some language М1,
the formulas of which are defined in terms of the ser
vices U1,...,Uk. For simplicity, let’s split the set of all
subjects of the system S of the system into two subsets S1
and S2, and S1∪S2 = S, S1∩S2 = ∅. Let also all objects that
can be accessed be divided into two classes O1 and O2, and
O1∪O2 = О, O1∩O2 = ∅.

Within the framework of such a distribution, it is easy to
formulate the following simple security policy P : subject S
can have access a∈R to the object O if and only if S∈Si,
О∈Oi, i = 1, 2. For each request from subject S to access
to an object in the security system must be able to calcu
late membership functions:

I A
x A

x A
x ()

, ,

, ,
=

∈
∉

1

0

for all subjects and objects: Is(S1), Is(S2), Iо(O1), Iо(O2).
Then the Boolean expression is evaluated:

(Is(S1)∧Iо(O1))∨(Is(S2)∧Iо(O2)).

 If the value received is 1 (true), then access is allowed.
If 0 (false), then – unresolved. Thus, it is clear that the
language М1 language, in which the security policy P is
expressed, relies on the services:

– calculation of membership functions Ix(А);
– calculation of a logical expression;
– calculation of the operator «if x = l, then S gets ac
cess to B, if x = 0, then it does not».
To support services in the М1 language, another М2

language is needed, in which the basic expressions for the
provision of services to the upperlevel language are defined.
It may happen that the М2 functions need to be imple
mented relying on the М3 language of a lower level, etc.

Suppose we can guarantee the services described in the
М2 language. Then the reliability of the policy P is deter
mined by the completeness of its description in terms of
services U1,...,Uk. If model P is formal, that is, language М1
formally defines the rules of policy P, then it is possible
to prove or disprove the assertion that the set of services
provided completely and unambiguously determines policy P.
This means that guarantees of the performance of these
services are equivalent to guarantees of compliance with the
policy. This, in turn, means that the more difficult task is
reduced to a simple one or to proving that these services
are sufficient to fulfill the policy. All this provides a proof
of protection from the point of view of mathematics, or
a guarantee in terms of confidence in the support of the
policy from the side of simpler functions.

3. Research results and discussion

PVS (Prototype Verification System) is an automated
system for the construction of a formal specification and
its verification, the main components of which are the
specification language and the theorem proving subsys
tem [8]. In addition, PVS contains syntax checkers, type
correctness, parsers, and several predefined theories. Let’s
consider each component of PVS in more detail.

The base of the PVS specification language is the clas
sical typed logic of the first order [9, 10]. The main types
of this logic are:

– uninterpretations that can be specified by the user;
– builtin (e. g. real numbers and Booleans);
– are interpreted to allow constraints on uninterpretations
or builtin types, in particular by means of predicates.
Predicative subtypes are dependent types that can

be applied to introduce additional constraints, such as
defining the type of prime numbers as a subset of in
tegers. Such restricted types can create additional proof
assertions (called TypeCorrectness Conditions, or TCCs),
but they greatly increase the expressiveness and clarity
of specifications. However, in practice, most TCCs are
accounted for automatically. Specifications in PVS are
grouped into parameterized theories, they can contain as
sumptions, definitions, axioms and theorems. Each theory
contains a series of statements called declarations. They
define the types, constants, variables, axioms, and for
mulas that will be used to prove theorems. Theories can
be reused, and some of the standard ones are included
in PVS. They allow to use bit vectors, lambda calculus,
graphs, and the like in specifications.

The PVS theorem proving subsystem is a set of ele
mentary inference rules applied by the user interactively
within the sequent calculus. These rules can be combined

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

43TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

into a proof strategy. The proof subsystem also allows proofs
to be restarted and checks all conditions (e. g. TCC).
Examples of elementary PVS withdrawal rules:

– propositional rules – for example, the antecedent rule;
– quantifier rules, allowing, in particular, to replace
variables in the existence quantifier with terms;
– equality rules, such as replacing one part of an iden
tity with another.
Other rules allow lemmas, axioms, type constraints, and

the like to be introduced.
The proof of the theorem begins with a conclusion

and consists in applying the rules chosen by the user one
by one to divide the proof into subgoals. The process is
repeated until the subgoals become trivial.

Let’s consider an example of PVS application for formal
proof of security within the BellLaPadula policy [11].
The BellaLaPadula policy is a type of mandatory security
policy, its basis is mandatory access control, based on the
following principles:

– all subjects and objects of the system must be uniquely
identified;
– a linearly ordered set of security labels must be specified;
– each object of the system is assigned a secrecy label,
which determines the value of the information con
tained in it;
– each subject of the system is assigned a secrecy label,
which determines the level of confidence in him in the
ITS, that is, the maximum value of the secrecy label
of objects to which the subject has access; the security
label of a subject is also called its access level.
The main goal of the BellaLaPadula policy is to prevent

information leakage from objects with a high level of access
to objects with a low level of access, that is, to counter the
emergence of information channels in the ITS from top to
bottom. For this, within the framework of the policy, two
rules of access control are formulated:

1. Simple security property: a subject can read informa
tion from an object if and only if the subject’s access level
is not lower than the object’s secrecy level.

2. *property: a subject can record information to an
object if and only if the subject’s access level is not higher
than the object’s secrecy level.

Let’s formalize the above reasoning.
Let the system define a set of objects O and subjects S,

S O⊂ set, a set of types of access R r w= { , } (here r – write
access, w – read) and security levels L U SU S TS= { , , , }. On the
set L, let’s introduce the relation « ≤ » and the operators
of the smallest upper and lowest boundaries « • » and « ⊗ ».
The « ≤ » relation has the following properties:

1) reflexivity:

∀ ∈ ≤a L a a: .

It means the possibility of transmitting information
about the same level;

2) antisymmetry:

∀ ∈ ≤() ∧ ≤()() → =()a a L a a a a a a1 2 1 2 2 1 1 2, : ;

3) transitivity:

∀ ∈ ≤() ∧ ≤()() → ≤()a a a L a a a a a a1 2 3 1 2 2 3 1 3, , : .

Thus, the relation « ≤ » is a loose order relation.

Operators of the smallest upper and lower bounds « • »
and « ⊗ » are defined as follows:

a a a a a a

a L a a a a a a

= ⋅ ↔ ≤() ∧

∧ ∀ ∈ ≤() → ≤() ∧ ≤()()()
1 2 1 2

3 3 3 1 3 2

,

: ;

a a a a a a

a L a a a a a a

= ⊗ ↔ ≤() ∧

∧ ∀ ∈ ≤() ∧ ≤()() → ≤()()
1 2 1 2

3 3 1 3 2 3

,

: .

Then the structure Λ = ≤ • ⊗{ , , , }L is called a lattice.
Let’s also set a function C S O L: ∪ → that for each object

of the system define the corresponding privacy label and
the Request: S O R∪ ∪ → { , }0 1 function, which will show
whether the subject is allowed or denied access to the
object by a certain method.

Now, within the framework of the above concepts, let’s
formulate the specified access control rules:

1. Simple property of safety:

∀ ∈ ∈ = ⇔ () ≤ ()()()s S o O s o r C s C oRequest, : , , . 1

2. *property:

∀ ∈ ∈ = ⇔ () ≤ ()()()s S o O s o w C o C sRequest, : , , . 1

As it is easy to see, the theorem about the impossibility
of leakage of confidential information will have the form:

∀ ∈ ∈ ¬ () ≤ ()() → =()s S o O C s C o s o rRequest, : , , .0

Let’s formulate the above provisions in the PVS speci
fication language.

First, let’s define the sets of objects, subjects, access
types and security labels as follows:

Object: TYPE.
Subject: TYPE FROM Object.
Access: TYPE = {r, w}.
Label: TYPE = {U, SU, S, TS}.

Let’s introduce the mappings C and Request, which describe,
respectively, the value function and the request for access:

C: [Object–>Label].
Request: [Subject, Object, Access–>bool].

Taking into account the above, the rules for differen
tiating access will take the form:

simple_property: AXIOM FORALL obj,
subj: (Request(subj, obj, r) = TRUE)
< = >(C(obj)< = C(subj)).
star_property: AXIOM FORALL obj,
subj: (Request(subj, obj, w) = TRUE)
< = >(C(subj)< = C(obj)).

Finally, the theorem on the impossibility of leakage
of confidential information can be formulated as follows:

unauthorized_access_impossibility:
THEOREM FORALL obj,
subj: (NOT (C(obj)< = C(subj))) 
= >(NOT (Request(subj, obj, r) = TRUE)).

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

44 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

Now let’s look at an automated proof of this theorem
using PVS tools:

|
{1} FORALL obj, subj:

(NOT (C(obj)< = C(subj))) 
= >(NOT (Request(subj, obj, r) = TRUE)).

Let us reduce the formula to Skolemi normal form,
depriving it of the universal quantifier due to the intro
duction of the constants «obj!1» and «subj!1». To do this,
apply the rule (skolem!). There is:

|

{1} (NOT (C(obj!1)< = C(subj!1))) 
= >(NOT Request(subj!1, obj!1, r)).

Let’s add the «simple_property» axiom to the ante
cedent, which is a formal expression of a simple security
property in the BellLaPadula model.

As a result, let’s obtain:

{–1} FORALL (obj, subj):

(Request(subj, obj, r) = TRUE)
< = >(C(obj)< = C(subj))
|

[1] (NOT (C(obj!1)< = C(subj!1))) 
= >(NOT Request(subj!1, obj!1, r)).

Now, to remove the added axiom from the quantifier,
replace the quantized variables with the constants «obj!1»
and «subj!1», thus achieving syntactic correspondence to
the consequent formula:

{–1} Request(subj!1, obj!1,
r)< = >(C(obj!1)< = C(subj!1))
|
[1] (NOT (C(obj!1)< = C(subj!1))) 
= >(NOT Request(subj!1, obj!1, r)).

Let’s rewrite the formula of the antecedent form A B↔
as () ():A B B A→ ∧ →

{–1} Request(subj!1, obj!1, r)
IMPLIES (C(obj!1)< = C(subj!1))
{–2} (C(obj!1)< = C(subj!1))
IMPLIES Request(subj!1, obj!1, r)
|

[1] (NOT (C(obj!1)< = C(subj!1))) 
= >(NOT Request(subj!1, obj!1, r)).

Let’s divide the antecedent formula, denoted as [–1],
into clauses, reducing it in form A B→ to ¬ ∨B A:

[–1] Request(subj!1, obj!1, r)
IMPLIES (C(obj!1)< = C(subj!1))

[–2] (C(obj!1)< = C(subj!1))
IMPLIES Request(subj!1, obj!1, r)

{–3} Request(subj!1, obj!1, r)
|
{1} (C(obj!1)< = C(subj!1))

After the previous step, the proof of the theorem is split
into two subtheorems, each of which can be performed
using the inference rule Γ Γ φ φ, :∈

1:
{–1} (C(obj!1)< = C(subj!1))

[–2] (C(obj!1)< = C(subj!1))
IMPLIES Request(subj!1, obj!1, r)

[–3] Request(subj!1, obj!1, r)
|

[1] (C(obj!1)< = C(subj!1))

2:
[–1] (C(obj!1)< = C(subj!1))
IMPLIES Request(subj!1, obj!1, r)

[–2] Request(subj!1, obj!1, r)

|

{1} Request(subj!1, obj!1, r)

[2] (C(obj!1)< = C(subj!1))

Having completed both subtheorems, let’s show the
truth of the original theorem on the impossibility of leakage
of confidential information in the BellLaPadula model.

4. Conclusions

The possibility of modeling and formal proof of the
security of the ITS, in which the BellaLaPadula security
policy is implemented using PVS, has been demonstrated.

The use of the method of formal proof of security in
the construction of secure ITS makes it possible to minimize
the number and significance of possible errors in design due
to indepth analysis of the security of the system using the
example of the formal model of ITS at the early stages of its
creation. In addition, this method can also be applied to check
the adequacy of an already built information security system.

The combination of the method of formal proof of secu
rity with formal logic systems, in particular PVS, makes it
possible to automate the process of bringing security, reduc
ing the task to correct modeling of the system in terms of
objectsubject interaction and the development of a security
policy. The possibility of using previously defined theories in
the proof allows to formulate in terms of the specification
language the necessary mathematical apparatus for each of
the common types of security policies: discretionary, man
dated or rolebased. Such a device can be further used as
a standard module, turning the system simulation into the
formation of properties, objects and access types specific
for a given ITS.

References

1. Antoniuk, A. A., Zhora, V. V. (2005). Obobshchenye modely uhroz
v ynformatsyonnotelekommunykatsyonnoi systeme. Pravove,

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

45TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

 normatyvne ta metrolohichne zabezpechennia systemy zakhystu
informatsii v Ukraini, 11, 50–54.

2. Glushkov, V. M. (1980). Sistema avtomatizatsii dokazatelstv.
Avtomatizatsiia obrabotki matematicheskikh tekstov. Kyiv: IK AN
USSR, 3–30.

3. Bishop, M. (2018). Computer Security Art and Science. Addison
Wesley Professional, 2865.

4. Owre, S., Shankar, N., Rushby, J. M., StringerCalvert, D. W. J.
(2020). PVS System Guide Version 7.1. SRI International. Avail
able at: https://pvs.csl.sri.com/doc/pvssystemguide.pdf

5. Owre, S., Shankar, N., Rushby, J. M., StringerCalvert, D. W. J.
(2020). PVS Language Reference Version 7.1. SRI International.
Available at: https://pvs.csl.sri.com/doc/pvslanguagereference.pdf

6. Owre, S., Shankar, N., Rushby, J. M., StringerCalvert, D. W. J.
(2020). PVS Prover Guide Version 7.1. SRI International. Avail
able at: https://pvs.csl.sri.com/doc/pvsproverguide.pdf

7. Antoniuk, A. O., Zhora, V. V. (2007). Vikoristannia dokazovogo
metodu dlia proektuvannia ta otsіnki rіvnia zakhischenostі
іnformatsіinotelekomunіkatsіinoї sistemi. Problemi programu
vannia, 3, 88–96.

8. Mu oz, C. A., Demasi, R. A.; Meyer, B., Nordio, M. (Eds.) (2012).
Advanced Theorem Proving Techniques in PVS and Applica
tions. Tools for Practical Software Verification. LASER 2011.
Lecture Notes in Computer Science. Springer, Berlin, Heidel
berg, 7682. doi: http://doi.org/10.1007/9783642357466_4

9. McGuinness, D. L.; Baader, F., Calvanese, D., McGuinness, D. L.,
Nardi, D., PatelSchneider, P. F. (Eds.) (2010). The Descrip
tion Logic Handbook. Theory, Implementation and Applications.
Cambridge: University Press, 624. doi: http://doi.org/10.1017/
cbo9780511711787

10. Turhan, A. Y.; Rudolph, S., Gottlob, G., Horrocks, I., van Har
melen, F. (Eds.) (2013). Introductions to Description Logics –
A Guided Tour. Reasoning Web. Semantic Technologies for
Intelligent Data Access. Reasoning Web 2013. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 8067. doi: http://
doi.org/10.1007/9783642397844_3

11. Bell, D. E., La Padula, L. J. (1976). Secure Computer Systems:
Mathematical foundations and model. Report ESDTR73278.
Mitre Corp. Bedford. Available at: http://wwwpersonal.umich.
edu/~cja/LPS12b/refs/belllapadula1.pdf

Victor Zhora, Junior Researcher, Research department No. 11 «Auto
mated Information Systems», Institute of Software Systems of National
Academy of Science of Ukraine, Kyiv, Ukraine, ORCID: https://orcid.org/
0000000326793056, email: victor.zhora@gmail.com

Oleksandr Synetskyi, Postgraduate Student, Institute of Soft
ware Systems of National Academy of Science of Ukraine, Kyiv,
Ukraine, ORCID: https://orcid.org/0000000256729269, email:
alexander.sinetskiy@gmail.com

