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THE SIMPLIFICATION OF 
COMPUTATIONALS IN ERROR 
CORRECTION CODING

The object of research is the processes of error correction transformation of information in automated systems. 
The research is aimed at reducing the complexity of decoding cyclic codes by combining modern mathematical models 
and practical tools. The main prerequisite for the complication of computations in deterministic linear error-correcting 
codes is the use of the algebraic representation as the main mathematical apparatus for these types of codes. De-
spite the universalism of the algebraic approach, its main drawback is the impossibility of taking into account the 
characteristic features of all subclasses of linear codes. In particular, the cyclic property is not taken into account 
at all for cyclic codes. Taking this property into account, one can go to a fundamentally different mathematical 
representation of cyclic codes – the theory of linear automata in Galois fields (linear finite-state machine).

For the automaton representation of cyclic codes, it is proved that the problem of syndromic decoding of these 
codes in the general case is an NP-complete problem. However, if to use the proposed hierarchical approach to 
problems of complexity, then on its basis it is possible to carry out a more accurate analysis of the growth of 
computational complexity. Correction of single errors during one time interval (one iteration) of decoding has  
a linear decoding complexity on the length of the codeword, and error correction during m iterations of permuta-
tions of codeword bits has a polynomial complexity. According to three subclasses of cyclic codes, depending on 
the complexity of their decoding: easy decoding (linear complexity), iteratively decoded (polynomial complexity),  
complicate decoding (exponential complexity). Practical ways to reduce the complexity of computations are 
considered: alternate use of probabilistic and deterministic linear codes, simplification of software and hardware 
implementation by increasing the decoding time, use of interleaving. A method of interleaving is proposed, which 
makes it possible to simultaneously generate the burst errors and replace them with single errors. The mathematical 
apparatus of linear automata allows solving together the indicated problems of error correction coding.
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1.  Introduction

The history of error correction coding dates back to the 
1948 publication of the well-known work [1, 2]. The first 
decades after that were characterized by the rapid development 
of a new branch of science, the creation of many currently 
known codes. But there was no practical implementation of 
new developments. The costs of implementing encoders and 
decoders could not be recouped in the then transmission and 
storage channels. Only thanks to satellite and space commu-
nications, where various innovations were quickly introduced, 
a new field of science and technology could develop [3].

The situation changed rapidly in the early 90s in con-
nection with the emergence of new telecommunication 
systems and various means of microcircuitry. This made 
it possible to immediately introduce powerful turbo codes 
and implement the Gallager codes (current name: (low-
density parity-check (LDPC) codes) [4]), which have been 
waiting in the wings for more than 30 years.

However, despite a number of positive characteristics 
of the new codes, the complexity of their implementation 
was also quite high.

Theorists of error correction coding were not interested in 
the problem of complexity for a long time, the first publica-
tions on this topic appeared only in the 70s [5]. Meanwhile, 
engineers have proposed many different ways to simplify 
computations, for example, the permutation  operation [6].

As a result, a rather motley picture of the combination 
of theoretical methods and practical methods of simplify-
ing the operations of code conversion has now emerged. 
Therefore, the task of analyzing the problem of compu-
tational complexity in modern error correction coding is 
timely and urgent.

Thus, the object of research is the processes of error cor-
rection transformation of information in automated systems.  
The aim of research is to reduce the complexity of decod-
ing cyclic codes by combining mathematical models and 
practical tools.
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2.  Methods of research

Further, the problem of complexity was investigated by 
other mathematicians, and they all agreed that the main 
problems of error correction coding belong to NP-hard (NP-
complete) problems [7]. Many experts interpreted these results 
as such, confirming the impossibility of a simpler decoding 
algorithm, which would be much simpler than brute force 
search over all codewords or all syndromes.

Of course, the wider the class of codes is investigated, 
the more arguments can be made for the growth of compu-
tational complexity. But we work mainly with one type of 
codes, and it is this type of codes that needs to be inves-
tigated and search for polynomial or at least subexponential 
decoding algorithms for it.

Considering the wide scope of application of cyclic codes, 
let’s restrict ourselves only to this class of codes. To repre-
sent cyclic codes as a subclass of linear codes, algebraic or 
matrix methods are traditionally used. And without a deep 
mathematical foundation, it is clear that solving systems 
of algebraic equations quickly turns the non-deterministic 
algebraic Berlekamp-Massey algorithm into an exponential 
in complexity.

Therefore, for cyclic codes let’s use the most suitable 
mathematical apparatus for them – the theory of linear 
automaton, that is, linear finite-state machine (LFSM) [8].

DEFINITION. LFSM is a finite automaton of linear type, 
over the Galois field is described by the transition function:

S t A S t B U t GF q( ) ( ) ( ), ( ),+ = ⋅ + ⋅1  

and the output function:

Y t C S t D U t GF q( ) ( ) ( ), ( ),= ⋅ + ⋅  

where t  – discrete time; A, B, C, D – characteristic matrices; 
S t( ) – state word; U t( ) – input word; Y t( )  – output word.

The automaton representation takes into account the 
main property of cyclic codes – the property of cyclicity. 
This makes it possible to consider the automaton-analytical 
and automaton-graph models of a cyclic code, and develop, 
on their basis, fundamentally new coding and decoding 
algorithms of predominantly polynomial complexity.

As proved in [8], a cyclic ( , )n k -code is able to correct 
all random errors of multiplicity or less if:

1) its automaton-graph model has τmin  levels;
2) at the τ-th level, the total number N τ  of vertices of  

all zero cycles (ZC) is equal to:

N
n

nτ τ τ
τ τ=

−
=

!

!( )!
, .min 1

Let’s estimate the complexity of the implementation 
and the decoding procedure for cyclic codes from for-
mal positions – NP-complete problems. As is known, the 
NP (nondeterministic polynomial) class consists of problems 
that can be quickly verified (within polynomial time), 
and the P (polynomial) class consists of problems that 
can be quickly completed [9].

In the case of an automaton representation of cyclic 
( , )n k -codes, the decoding problem in the general case can 
be interpreted as constructing a path of length n along a di-
rected graph from another given vertex to another vertex. 
The number of computations during decoding increases 

exponentially with the increase in the number of vertices in 
the graph. The decoding complexity condition is satisfied.

To check the correctness of decoding, it is enough to 
replace the error bits Zerr  in the n-bit word and calculate 
the new value of the error syndrome Serr . The parameter 
Serr is the next state of the LFSM. The zero value of the 
syndrome means the correctness of the decoding operation, 
otherwise, the presence of errors in the received word Zerr . 
The algorithm for calculating the syndrome is determi nistic 
and always takes n clock cycles of the decoder. The simple 
check condition is also met.

Although the automaton methods of decoding are gene-
rally NP-complete problems, for many subclasses of cyclic 
codes decoding algorithms have polynomial complexity.

For example, the most common cyclic codes – CRC 
codes (Cyclic Redundancy Code) – can correct single er-
rors ( )τ = 1  or detect all double and odd errors for any code 
length n [10]. Finding such errors will take no more than 
n clock cycles of the decoder. Therefore, for CRC codes, 
the decoding complexity will always be linear O n( ), and 
the codes themselves can be called easily decoded. Further, 
let’s consider other types of codes with simple decoding.

As in many other areas, in practice, the problem of 
computational complexity can be solved by breaking the 
overall complex problem into a number of simple subtasks. 
In error correction coding, it is advisable to analyze the 
following subproblems:

– combination of several error correction codes;
– use of iterative procedures;
– use of permutation.
Let’s consider critically each of these subtasks and the 

degree to which it performs the function of simplifying 
computations for various types of codes.

3.  Research results and discussion

3.1.  Combination  of  several  error  correction  codes. Ac-
cording to the author of [1, 2]  the main condition for ob-
taining a code with a high correction ability is the maximum 
possible length of this code. However, the complexity of the  
implementation of such a code will grow exponentially.

The way out of this deadlock was the idea of concate-
nation of several (more often two) deterministic codes, 
proposed by the author of [11]. According to this proposal, 
the codewords of the code of the previous coding stage 
can be considered as the original data for the next coding 
stage, and the decoding is carried out in the reverse order. 
In the language of mathematics, the direct (Kronecker) 
product of the ( , )n k1 1 -code Ω1  and the ( , )n k2 2 -code Ω2  gives  
the ( , )n n k k1 2 1 2 -code Ω. In a concatenated code, an increase 
in the correction ability occurs when the code rate de-
creases and the complexity of the source codes Ω1 and 
Ω2 remains unchanged.

A completely different situation arises when combining 
deterministic and probabilistic codes. The purpose of this 
combination is to improve the performance of new code. 
For example, VoIP Internet telephony systems use data 
formats with a length of 40 to 352 bits [12]. For such code 
lengths, the performance of turbo codes decreases sharply, 
that is, increases with each subsequent error. On the other 
hand, in such data formats, the deterministic CRC quickly 
corrects individual errors left behind by the probabilistic 
code. Similarly, digital television combines LDPC codes 
with Bose-Caudhuri-Hochquenghem (BCH) codes.
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3.2.  Iterative  implementation of  the decoding procedure.  
According to the theory of algorithms [13], each computa-
tional algorithm can be evaluated according to two criteria:

1) time complexity;
2) space complexity.
In terms of error correction coding, space complexity 

is estimated by the cost of hardware or software imple-
mentation of the encoding and decoding operations.

The first codes did not require a lot of time or hardware. 
Relatively speaking, for the first codes, the implementa-
tion of these operations provided for a single execution 
of the encoding and decoding algorithms during one time 
interval. However, decoding any code in one pass is ex-
tremely expensive.

The theory of algorithms suggested a way to solve 
this problem: a decrease in space complexity is possible 
at the expense of an increase in time complexity. Once 
the probabilistic algorithms were implemented in a rather 
iterative mode, it was then possible to obtain practical 
encoders/decoders for LDPC codes and turbo codes. space 
complexity was exchanged for increased encoding/de- 
coding times.

But to this time, iterative decoding is associated only 
with probabilistic codes. In [14], the use of iterative decod-
ing is substantiated for deterministic, in particular, cyclic 
codes. For this approach, it is possible to use non-algebraic 
decoding methods in Galois fields. As the author of [15] 
showed, for any integer all cyclic codes are invariant under 
permutations of symbols of the form:

i q i n GF qm→ ( )mod , ( ).υ  

In other words, g x( ) if the generator polynomial g x( ) 
of the cyclic code divides the code polynomial f x( ), then 
it will also divide the polynomial f x q( ), the symbols of 
which are rearranged in accordance with the rule i qi→ . 
Let’s call such permutations as cyclic. The most simple 
cyclical permutation of a codeword Z  is that the odd bits 
of the word are written first, and then the even bits (you 
can start with even bits too).

As a result, let’s obtain a new codeword. The cyclic 
permutation can be performed sequentially several itera-
tions until the original word Z  is obtained (Fig. 1 shows 
the first three word Z  permutations).

In other words, if the generator polynomial g x( ) of 
the cyclic code divides the code polynomial f x( ), then 
it will also divide the polynomial f x q( ),  the symbols of 
which are rearranged in accordance with the rule i qi→ .

It is important that with the help of such permuta-
tions, the error correction in the received codeword is 
directly implemented.

Let there be noise in the communication channel, which 
caused a set of errors in the codeword Zerr  within the correction 
capacity of a specific ( , )n k -code. It is possible to introduce 
the concept of the checking windows X  as a continuous 
cyclic sequence of r bits of an n-bit word ( )r n k= −  (Fig. 2).

       . 
 
 

 
 
 
 

 

       . . . . . .    . . . 

( ) , , 1)mod , 1v
v w iX z z z Z w v r n i n= ∈ = + − = ÷

Fig. 2. Codeword Zerr  checking window X i( )

Such a window X i( ) can be cyclically moved along 
the entire word Zerr . The essence of the method for cor-
recting multiple errors consists in calculating a new er-
ror syndrome Serr  at each iteration and forming such a 
variant of the permutation when all the error bits of the 
codeword Zerr  fall into the checking window X i( ).  A sign 
of correct decoding is obtaining a zero value of the error 
syndrome Serr  at one of the iterations.

Let’s estimate the complexity of decoding using cyclic 
permutations. First, let all τ  erroneous bits in the word 
Zerr  be located in different checking windows X i( ).  If it 
took h iterations of cyclic permutations and n clock cycles 
of the decoder at each iteration, then the complexity of 
decoding the ( , )n k -code will be quadratic O nh( )  ( ),h n≤  
and the cyclic codes themselves can be called permutable 
decoded. Such codes include, for example, Golay codes.

The most difficult variant of decoding will be in the 
case when one iteration fails to place all errors in single 
checking window. In this case, the LFSM theory allows to 
use another variant of decoding using a tree-like directed 
graph G V E( , )  of a cyclic code with a set of vertices V  
and a set of arcs E .  Then the decoding result will be 
successful if it is possible to construct a path of length 
n along the graph G V E( , )  from the vertex corresponding 
to the syndrome Serr  to the root vertex. If the known 
methods for constructing paths in a graph can only offer 
a complete enumeration of options, then the proposed 
method in this situation gives recommendations for acce-
lerated path construction based on taking into account 
the structure of the graph G V E( , ).

The complexity of such a search procedure will de-
crease n times and it can be estimated by the formula:

O
V

n

E

n
[ ] [ ]





, .

In this case, the complexity of decoding 
the ( , )n k -code will be subexponential, and 
the cyclic codes themselves can be called 
as complicated-decoded.

The considered decoding method makes it 
possible to correct errors within the correction 
capacity of the cyclic code. Errors beyond the 
correction capacity can be corrected by us-
ing two cyclic codes with different generator 
polynomials. The first cyclic code is used to 
search for possible configurations of errors in 
a word, and the second code is used to con-
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Fig. 1. Cyclic permutations of a 17-bit codeword
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firm the correctness of the selected error 
configurations [8].

3.3.  Use  of  permutation  in  error  cor-
rection coding. The complexity of the cal-
culations depends on the type of errors 
in the data transmission channels.

Distinguish between inverse errors 
(changing the correct values to others 
from a given alphabet of values) and 
erasures (errors in which the values are 
unknown, but their location is known). 
Inverse errors and erasures can be either 
random (i. e., spaced across the entire 
length of the word Zerr) or burst error 
(concentrated in a limited area of the 
word Zerr).

In error-correcting coding, there are 
different interpretations of the permuta-
tion operation, the most common are:

– conversion of burst error into single 
random errors;
– change the order of the positions 
of code word when it is transmitted 
over the communication channel (rear-
rangement of bits);
– special methods of change the po-
sitions of code word (interleaving), 
which are used in turbo-codes and 
LDPC-codes.
Burst errors must first be converted into statistically 

random single errors (that is, execute permutation), and 
then the decoder must perform the actual decoding opera-
tion – this is the essence of the Shannon error correction 
coding stra tegy. For probabilistic codes, permutation is 
inalienable operation at encoding and decoding.

In deterministic codes, permutation is optional, but 
can also be useful when used correctly [6].

It is believed that the burst error are more difficult to 
decode (of course, if to use algebraic decoding methods 
such as Berlekamp-Massey) [4], although in most cases 
this is a false thesis. For example, a cyclic ( , )n k -code using 
non-algebraic methods can display burst error of length 
up to ( )n k−  bits in one codeword Zerr  and correct burst 
error of length to m 2  bits ( )m n k= −  [7]. Therefore, in 
many cases it is advisable to form burst error from single 
errors, to speed up the process of detecting and correcting 
erroneous bits in a word Zerr .

The mathematical analysis of cyclic permutation shows 
its interesting and very important properties. First, there 
is move word positions simultaneously in two opposite 
directions: n bits of the word gradually merge into burst 
of length n (Fig. 3). The secondly, at the same time as 
changing the order of the positions of code word decoder 
correct errors in this word.

If several codewords are involved in traditional permu-
tation, then the proposed permutation occurs only within 
one codeword (Table 1)

Another significant difference is that permutation is 
ne cessary only on the receiver side. The transmitter trans-
mits the codeword Z to the channel without transforma-
tions, significantly saving time. The advantage of (LFSM)  
is the ability to simultaneously permutation and correct 
errors.

4.  Conclusions

The paper shows that traditionally complexity studies  
are performed for linear codes that combine a large number 
of different error correction codes, often with mutually 
opposite characteristics. Of practical interest is a com-
parative analysis of the complexity of decoding a smaller 
set of codes with similar characteristics, in particular,  
a class of cyclic codes. As expected, it confirms the con-
clusion previously obtained by other researchers that the 
problem of syndromic decoding of cyclic codes is an NP-
complete. In connection with this statement, it is possible 
to mention the fact that «it is practically impossible to 
correct more than six errors in one codeword of the Reed-
Solomon code» [16]. On the other hand, it is generally 
known that the main advantage of cyclic codes is the 
simple implementation of their encoders and decoders. 
This mathematical paradox can be explained only based 
on a hierarchical approach to complexity problems, tak-
ing into account various factors (type and multiplisity 
of errors in the channel, suitability of the mathematical 
apparatus for specific codes, etc.). As a result, different 
subclasses of cyclic codes have differ degrees of spatial 
and temporal complexity. Let’s believe that in order to 
reduce the gap between theory and practice, it is advisable 
to use various practical ways to simplify computations: 
concatenated codes, iterative decoding, and permutation. 
So far, not all reserves of effective use of error correction 
codes have been used. 

It should be emphasized that the basic mathematical 
apparatus of error correction coding have key importance 
in reducing the complexity of computations, in this case, 
the theory of linear automaton. Only the transition to 
non-algebraic representations of cyclic codes allows the use 
of new approaches in iterative decoding and permutation.  
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Fig. 3. Three-iteration formation of a burst from the positions  
of the codeword (yellow color) and splitting the second burst from the positions of the codeword  

for separate positions (blue color)

Table 1

Distinctive features of the two types of permutation

Main characteristics  
of permutation

Matrix block permutation Cyclic permutation 

Type of transformation
Error burst 
error→random errors

Error burst error→random errors,
random errors→burst error 

Code operations
Coding,
decoding

Decoding

Object of permutation Set of codewords Single codeword
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The results of the study are also of interest for other 
error correction codes.
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