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Forecasting the Artificial Intelligence Index Returns: A Hybrid 
Approach  

 
Yue-Jun Zhang*, Han Zhang**, Rangan Gupta*** 

 
Abstract: Forecasting of the artificial intelligence index returns is of great 
significance for financial market stability and the development of artificial 
intelligence industry. To provide investors more reliable reference in terms of artificial 
intelligence index investment, this paper selects the Nasdaq CTA Artificial 
Intelligence and Robotics (AI) Index as the research target, and proposes novel hybrid 
methods to forecast the AI index returns by considering its nonlinear and time-varying 
characteristics. Specifically, this paper uses the ensemble empirical mode 
decomposition (EEMD) method to decompose the AI index returns, and combines the 
least square support vector machine approach together with the particle swarm 
optimization (PSO-LSSVM) method and the generalized autoregressive conditional 
heteroskedasticity (GARCH) model to construct novel hybrid forecasting methods. 
The empirical results indicate that: first, the decomposition and integration models 
usually produce superior forecasting accuracy than the single forecasting models, due 
to the complicated feature of the non-decomposed data. Second, the newly proposed 
hybrid forecasting method (i.e., the EEMD-PSO-LSSVM-GARCH model) which 
combines the advantage of traditional econometric models and machine learning 
techniques can yield the optimal forecasting performance for the AI index returns.  
Keywords: AI index return forecasting; PSO-LSSVM model；GARCH model；
Decomposition and integration model; Combination model 
JEL codes: Q43; G15; E37 
 
 
                                                             
* Corresponding author. Business School, Hunan University, Changsha 410082, China; Center for 
Resource and Environmental Management, Hunan University, Changsha 410082, China. Email: 
zyjmis@126.com. 
** Business School, Hunan University, Changsha 410082, China; Center for Resource and 
Environmental Management, Hunan University, Changsha 410082, China. Email: hanalms@163.com.  
*** Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; 
Email: rangan.gupta@up.ac.za. 



2  

 
1. Introduction 

Making accurate predictions of financial time series is one of the most 
challenging tasks for researchers and financial-market participants (Zhang and Wang, 
2019; Zhang et al., 2020; Ghosh et al., 2021). In recent years, index investment has 
gained extensive attention around the world, and has impacted the traditional mode of 
asset-management business, while the compound annual growth rate (CAGR) of 
index funds has always maintained rapid growth. Especially with the development of 
artificial intelligence (AI) technology, in the wake of the so-called 4th Industrial 
Revolution, more enterprises have begun to join the artificial intelligence industry and  
the artificial intelligence technologies have dramatically reduced the global poverty 
(Gruetzemacher et al., 2021), and investors have also started to pay closer attention to 
the emerging field. According to the AI Index 2021 annual report, despite the 
pandemic, the year of 2020 still saw a 9.3% increase in the amount of private AI 
investment from 2019, a higher percentage increase than in 2019 (5.7%). Furthermore, 
the statistical data also show that the United States remains the leading destination for 
private investment, with over USD 23.6 billion in funding in 2020, followed by China 
(USD 9.9 billion) and the United Kingdom (USD 1.9 billion) (Zhang et al., 2021). It 
can be seen that the growth in the AI investment trend is here to stay, and how to seize 
this smart investment boom is an important question. In this regard, relevant investors 
need to first choose a reliable index reflecting the investment opportunities associated 
with the AI technology, which allows them to dynamically grasp the evolution of the 
returns for the entire range of this industry. 
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At present, the indexes related to artificial intelligence and robots mainly include 
the Nasdaq CTA Artificial Intelligence and Robotics Index (NQROBO Index), the 
Global Robotics and Automation Index (ROBO Index), and the Indxx Global X 
Robotics & Artificial Intelligence Index (IBOTZ Index). Among them, the Nasdaq 
CTA Artificial Intelligence and Robotics Index (hereafter referred to as AI index) is 
designed to track the performance of companies engaged in the artificial intelligence 
and robotics segment of the technology, industrial, medical and other economic 
sectors, and mainly includes the companies in artificial intelligence or robotics that 
are classified as either enablers, engagers or enhancers. Therefore, this index can 
comprehensively reflect the overall stock prices change and the associated 
development of the AI industry, and is clearly the most important among the three 
major indexes above. Meanwhile, based on its price data, we can further figure out 
that from December 19, 2017 to July 23, 2021, the cumulative return rate of AI index 
reached 84.84% and the annualized return rate was 33.92%. Besides, the movement in 
this index is also closely tied with other financial assets (Le et al., 2021; Tiwari et al., 
2021). Therefore, it is of great significance to forecast the AI index returns accurately, 
so as to provide an important reference for investors to select suitable index funds and 
investment tools, and help them target the investing opportunities of the growing 
artificial intelligence and robotics industries by grasping its associated trends and 
risks. 

However, the existing literature about AI index returns forecasting is relatively 
scarce, especially accounting for the nonlinear and time-varying characteristics of this 



4  

index. The financial time series forecasting models commonly used can be classified 
into traditional econometric models and machine learning methods, and both of them 
possess their own advantages and disadvantages in the process of forecasting. For 
example, the traditional econometric models are usually effective in capturing the 
linear and time-varying components, while they cannot fully capture the nonlinear 
components and have several requirements for data stability (Lin et al., 2011; Zhang 
et al., 2015). However, the machine learning methods are suitable for prediction of 
non-stationary nonlinear time series because of their flexible nonlinear 
function-fitting capabilities and less-restrictive assumptions that are imposed on the 
data, but their forecasting performance is easily affected by data size and parameter 
settings (Wang et al., 2005; Psaradellis and Sermpinis, 2016). In addition, the existing 
literature also points out that the single models, characterizing a specific feature of the 
data, usually cannot identify all states and correlations in complex time series 
(Khashei and Bijari, 2011), and are unable to extract their inherent dynamics, which 
consequently affects the forecasting accuracy. Given these limitations, hybrid models 
gradually emerged in the financial time series prediction literature (Zhang and Zhang, 
2018; Li et al., 2021; Xiao et al., 2021). For instance, Yu et al. (2008) propose the 
“decomposition-integration” hybrid models, and the results show that the hybrid 
models always possess better forecasting ability. Bildirici and Ersin (2013) combine 
the multi-layer perceptron model with the new Smooth Transition Autoregressive 
model and GARCH model, which introduce the fractional integration and asymmetric 
property (LSTAR-LST-GARCH-MLP model), and prove that this hybrid framework 
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can capture volatility clustering, asymmetry and nonlinearity characteristics of petrol 
prices. Rapach et al. (2010) indicate that model combination can improve the 
prediction performance by synthesizing the features-capturing capability of individual 
models. Given this, relevant issues pertaining to the AI index returns involve which 
type of model has better predicting capability, and how to design a reliable predicting 
method that accurately explore the intrinsic structural characteristics of AI index 
returns.  

Therefore, this paper attempts to combine the econometric models and machine 
learning methods to depict the linear and nonlinear characteristics of AI index return, 
and then develop the hybrid forecasting approach given the complexity of the data 
generating process of the AI index. Specifically, this paper first employs the ensemble 
empirical mode decomposition (EEMD) model to decompose the AI index return 
series into a series of intrinsic mode functions (IMFs) and the residual term. Second, 
the different models (namely, the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) and Particle Swarm Optimization (PSO) with Least 
Squares Support Vector Machine (LSSVM), i.e., PSO-LSSVM) are developed to 
forecast the IMFs and the residual term, respectively, with the sum of forecasted 
values for all components being the final forecasting results of the decomposition and 
integration models. Finally, this paper employs two methods to combine the 
econometric models and machine learning models, and then constructs two novel 
hybrid models that can capture the nonlinear and time-varying components of AI 
index returns simultaneously.  
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The contribution of this paper mainly involves two aspects: (1) Previous research 
has primarily focused on the common comprehensive indexes in the financial market 
(such as the S&P500 index; see Rapach and Zhou (2021) for a detailed discussion on 
the literature associated with international stock market forecasting), but the 
comprehensive index cannot reflect and predict the development of artificial 
intelligence industry. This paper focuses on the Nasdaq CTA Artificial Intelligence 
and Robotics Index, and conducts an in-depth analysis and forecasting of this index, 
so as to provide more information for investors about the development in the AI 
industry. (2) The previous studies usually employ the single forecasting model but 
could not systematically capture the inherent structural characteristics of overall index 
returns (Rapach and Zhou, 2013; Tiwari et al., 2016). Given this, our paper attempts 
to explore the appropriate forecasting models for the AI index return from multiple 
perspectives for the first time.  

The empirical results imply that the hybrid model (i.e., 
EEMD-PSO-LSSVM-GARCH) driven by data characteristics can overcome the 
limitations of a single model, and effectively depict the time-varying and non-linear 
characteristics in the AI index returns and achieve superior forecasting performance 
for the AI index returns, which provides relevant investors more reliable reference in 
terms of portfolio selection and asset management. 

The remainder of this paper is organized as follows: Section 2 briefly describes 
the models. The data set is presented in Section 3, and the empirical results are 
discussed in Section 4, with Section 5 concluding the paper. 
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2. Methods 
2.1. The EEMD method 

In order to decompose the complex original signal into components with 
different characteristics, and maintain the non-stationary and non-linear features of the 
original time series data, this paper selects the EEMD method (Wu and Huang, 2009) 
to decompose the AI index returns sequence. The main steps of decomposition are as 
follows: 

(1) Add a white noise series ( )io t  with a given amplitude (i.e., 0.1) to the AI 
Index returns series ( )x t , and the new series ( )ix t  is as follows:  

( )= ( ) ( )i ix t x t o t                           (1) 
(2) Decompose the time series with added white noise ( )ix t  into n IMFs ( )i

jc t  
(j = 1, 2, . . . , n) and a residual term ( )ir t  by the EMD method, and the results are as 
follows: 

1
( ) ( ) ( )ni i i

j
j

x t c t r t


                          (2) 
where ( )i

jc t  is the jth IMF in the ith trial. 
(3) Repeat steps (1) and (2) for M number of times with different white noise 

each time and obtain the corresponding IMF components of the decomposition; 
(4) Calculate the average of corresponding IMFs of M trials as the final IMFs as 

follows: 
1( ) ( )i

j jc t c tM                        (3) 
Once the EEMD completes, the original time series can be expressed as a linear 
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combination of IMFs and the residual term, as follows: 

1
( ) ( ) ( )n

j
j

x t c t r t


                       (4) 
where ( )jc t (t = 1, 2, . . . , T ) is the jth IMF using the EEMD method at time t, ( )r t is 
the final residual term, and n is the number of IMFs. 

 
2.2.  The PSO–LSSVM method 
2.2.1. The LSSVM method 

In order to better describe the non-linear characteristics of the AI index returns, 
we single out the LSSVM model which is the typical method in machine learning 
(Suykens and Vandewalle, 1999). The main reason is that the LSSVM regression 
algorithm can obtain a global optimization by solving a set of linear equations, which 
allows the model to be faster than the SVM framework. The specific description of 
the model is as follows: Given a set of samples 1{ }T

t t ty ,x  , tx  is the input vector and 
ty is the output variable. Then the decision function can be defined as: 

( ) ( )T
biasy x x c  w                           (5) 

where ( )x  denotes the nonlinear function that maps the input space to a high 
dimension feature space, w represents the weight vector, and biasc  is the bias term. 

The objective function of the LSSVM model is:  
( tr)

2 2
1

1min 2 2
Treg

t
t

c 


   w
                           (6) 

s.t. ( (( ) , 1,2, ,T tr tr
t t t biasy x c t T    w ） ） 

where regc  is the regularization constant, and t  denotes the training error. 
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According to the Kuhn-Tucker conditions (Kuhn and Tucker, 1950), the final 
outcome of the LSSVM method can be described as:  

( )

1
( ) ( , )

trT
t t bias

t
y x K x x c


                       (7) 

where ( , )tK x x indicates the kernel function. We apply the radial basis function 
(RBF), which is commonly used in nonlinear regression problems (Keerthi and Lin, 
2003). The RBF with a width of   can be shown as: 

2 2( , ) exp( 0.5 / )t tK x x x x                      (8) 
When using the LSSVM method with the RBF kernel function, the parameters 

  and regc  should be estimated and optimized.  
2.2.2. The PSO method 

The PSO method is an evolutionary computational technique, which is based on 
the simulation of flocking and swarming behaviors of birds and insects (Eberhart and 
Kennedy, 1995). Compared to other evolutionary computational methods, it can 
efficiently find the optimal or near optimal solutions to the problem under 
consideration. The PSO method uses a set of particles, representing potential solutions 
to the problem. Then each particle moves towards the optimal position, which can be 
found out by adjusting the direction of its previously best position, and its best global 
position. 

We can define each particle as a potential solution to the problem in a 
d-dimensional search space. Let 1 2( , , , )i i i idU u u u   be the current position of 
particle i, 1 2( , , , )i i i idV v v v   be the current velocity, 1 2( , , , )i i i idP p p p   be the 
previous position, and 1 2( , , , )g g g gdP p p p   be the best position among all 
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particles. Then the best position of particle i can be computed using the following 
equations: 

1
1 1 2 2[ ] [ ]k k k k

id id id id gd idv wv c r p u c r p u                      (9) 
1k k

id id idu u v                              (10) 
where k

iv  and k
iu  is the current velocity and position of particle i, respectively; w  

is the inertia weight; 1c  and 2c  are two positive constants called acceleration 
coefficients, and 1r  and 2r  are two independently uniformly distributed random 
variables with the range [0, 1]. 
2.2.3. The PSO-LSSVM method 

Due to the parameters   and regc  having great influence on the forecasting 
accuracy, we employ the PSO method to obtain the optimal parameters (Eberhart and 
Kennedy, 1995), and the main steps of the PSO-LSSVM approach can be described as 
follows: 

Step 1. Take the parameters ( , regc ) as swarms and initialize a population of 
particles with random positions and velocities; 

Step 2. Evaluate the fitness of each particle. We use the following fitness 

function: 
20 2 1/2

1
1 ˆFitness [ ( )]i i

i
y yN 

  , where iy  and ˆiy  represent the actual and 

forecasted AI index returns, respectively; 
Step 3. Update the previous and global best fitness according to the fitness 

evaluation results; 
Step 4. Update the velocity and position values for each particle until the stop 

conditions are satisfied (i.e., the number of iterations reaches the maximum 100 or the 
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optimal parameters satisfy the accuracy requirement, i.e., the value of fitness is less 
than 0.001). The velocity for each particle is calculated based on Eq. (9), and each 
particle moves to its next position according to Eq. (10). 
2.3. The GARCH model 

To capture the time-varying character of AI index returns movement, we employ 
the GARCH model proposed by Bollerslev (1986) which is the most commonly used 
econometric model in analyzing the returns volatility of financial markets. The model 
is defined as follows:   

1 1+t t t tr r r u                                       
           t t tu h                                   (11) 

2
0 1 1t t th u h       

where tu  represents residual series, and th  is conditional variance. When 
1, ,t n  , t ~N(0, 1); and the model should satisfy 0 0  , 0  , 0   and 

1   . 
2.4.  The hybrid method for forecasting AI index returns 

The hybrid method, which has capability to model both nonlinearity and time 
variations, can be considered to be a good strategy for AI index returns forecasting. 
Under this circumstance, we attempt to construct a hybrid model based on the 
decomposition and integration, and model combination methods, and the procedures 
can be described as follows: 

(1) The EEMD method is used to decompose the original AI index return series 
to obtain the IMFs and the residual term; 
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(2) We normalize the decomposed IMFs components and residual term, and 
appropriately select training samples and test samples. Then, the single models above 
(i.e., the GARCH and PSO-LSSVM models) are used to forecast the IMF components 
and residual term respectively; 

(3) The forecasting results of each IMF component and residual term are 
superimposed to obtain the final forecasting results of the decomposition and 
integration models (i.e., the EEMD-GARCH and EEMD-PSO-LSSVM models); 

(4) The following two methods are used to obtain the hybrid predictions: 
     a) The GARCH model is built to predict high-frequency IMFs with 
time-varying characteristics, while the PSO-LSSVM model is built to predict 
low-frequency IMFs and residual terms with nonlinear characteristics. Next, the final 
forecasting results of the new hybrid model is obtained by superimposing the 
forecasts above, i.e., EEMD-PSO-LSSVM-GARCH(A) model; 
     b) We combine the forecasting results of EEMD-GARCH and 
EEMD-PSO-LSSVM in Step (3) by mean combination approach, and the new hybrid 
model i.e., EEMD-PSO-LSSVM-GARCH(B),① is used to obtain the final forecasting 
results.  
2.5. The evaluation criteria for forecasting performance 

According to Hansen and Lunde (2005), we apply two widely used statistical 
loss functions, i.e., Mean Square Error (MSE) and Mean Absolute Error (MAE), to 

                                                             
① We use the mean combination approach to obtain the EEMD-PSO-LSSVM-GARCH(B) forecasts. 
This is because some research points out that the simple mean forecast combination cannot be 
outperformed by other complicated forecast combination methods (Rapach et al., 2010; Claeskens et al., 
2016). 
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evaluate the out-of-sample forecasting performance for AI index returns, which are 
defined as Eqs. (12)-(13): 

     
2

1
1 ˆ( )T

t t
t N

MSE h hT N  
                         (12) 

1
1 ˆ| |T

t t
t N

MAE h hT N  
                         (13) 

where represents the actual return whereas  represents the forecasted return;  
and  respectively stand for the number of full-sample and in-sample observations, 
while  is the out-of-sample observations.  
 
3. Data description 

This paper, following Huynh et al., (2020), chooses the daily AI+Robo index 
price data from NASDAQ market as the research focus, with the data obtained from 
Bloomberg.② The full sample ranges from 12/19/2017-07/26/2021, and the specific 
sample periods for training- and testing-samples are 12/19/2017-10/13/2020 and 
10/14/2020-07/26/2021, respectively. The AI index returns are calculated as: 
rt=100×[log(pt)-log(pt-1)], where indicates the AI index price at time t. The daily 
AI index log-returns are shown in Figure 1.  

                                                             
② Further information about AI index is available at: https://indexes.nasdaqomx.com/Index/Overv
iew/NQROBO. 

th t̂h T
N

T N

tp



14  

-12

-8

-4

0

4

8

12

2018 2019 2020 2021

AI 
Ind

ex 
retu

rn

 
  Figure 1. The AI index log-returns 

 
Table 1 presents the descriptive statistics of the AI index returns. It can be 

observed that the AI index returns series has negative skewness and positive excess 
kurtosis, suggesting the presence of a leptokurtic and fat-tailed distribution. Moreover, 
the Jarque-Bera test results indicate that the null hypothesis of a normal distribution is 
rejected at the 1% significance level. The Ljung-Box Q-statistics for the squared 
returns also reject the null hypothesis of no autocorrelation up to the 10th order at the 
1% significance level, which indicate the existence of autocorrelation in the AI index 
returns volatility. Additionally, Table 1 also presents the results of unit root tests. 
Specifically, the results of the Augmented Dickey-Fuller (ADF; Dickey and Fuller, 
1981) test and Phillips-Perron (PP, Phillips and Perron (1988)) test reject the null 
hypothesis of a unit root at the 1% significance level, indicating that the AI index 
returns are stationary over the sample period.  
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Table1. Descriptive Statistics of the log-returns of the AI index  

 AI index  AI index 
Mean 0.0672 Q(10) 91.354 (0.0000) 
S.D. 1.3775 Q2(10) 619.02 (0.0000) 

 Skew  -0.9783 ADF -8.8190 (0.0000) 
Kurtosis 13.2993 PP -29.2280 (0.0000) 

J-B 4180.96 (0.0000)   
Note: p-values are reported in parentheses. S.D. represents the standard deviation. J-B is Jarque-Bera test statsitic 
with the null hypothesis of normal distribution.  and  denote the Ljung-Box Q-statistics of the 
returns and squared returns series for up to 10th order serial autocorrelation. ADF and PP are the statistics of the 
augmented Dickey-Fuller and Phillips-Perron unit root tests, respectively, based on lags determined by the Akaike 
Information Criterion (AIC). 
 
4. Results and discussions 
4.1. The EEMD decomposition results 

Based on the discussion of the methods above, we obtain the EEMD 
decomposition result of AI index returns in Figure 2. First, the original AI index 
returns series is decomposed by the EEMD method into eight independent intrinsic 
mode functions and one residual term, which are defined as sub-series in the 
following section. As seen from Figure 2, the IMFs obtained by the EEMD algorithm 
are irregular, which are caused by the nonlinear and noise components of the AI index 
returns. In addition, the frequency of eight IMF components and the residual term is 
arranged from high to low, which shows the diversity in terms of frequency, and 
multi-scale characteristics of the AI index returns. Specifically, the average period of 
IMF1-IMF5 is relatively short, which is the high-frequency component of the original 
AI index returns series and reflect the impact of short-term irregular events in the 
artificial intelligence industry, and the GARCH model is used to forecast these 

(10)Q 2(10)Q
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sub-series; the average period of IMF6-IMF8 is relatively long, and indicates the 
impact of major events in the field of the artificial intelligence, and the PSO-LSSVM 
model is applied for forecasting these sub-series. Moreover, the residual term declines 
slowly since September 2019, which reflects the impact of economic fundamentals on 
the Artificial intelligence industry, and indicates that the AI index returns have tended 
to decline since September 2019.  

 
Figure 2. The EEMD decomposition of the log-returns of the AI index 

4.2. Forecasting results of AI index returns 
In order to find the optimal forecasting model for AI index returns based on the 

randomness, periodicity and trend of this series, we examine the forecasting 
performance of all competitive models. First, we consider the single forecasting 
model without data decomposition method, i.e., traditional econometric model 
(GARCH) and the machine learning framework (PSO-LSSVM). Second, we employ 
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the GARCH and the PSO-LSSVM models to forecast all the sub-series respectively, 
and obtain the forecasts from integrated-decomposed models (i.e., the 
EEMD-GARCH and EEMD-PSO-LSSVM models). Finally, we use two methods to 
combine the EEMD-GARCH and EEMD-PSO-LSSVM models, and derive the 
forecasts from the new hybrid models (i.e., EEMD-PSO-LSSVM-GARCH (A) and (B) 
models). The forecasting results are reported in Table 2. From this table, we can 
identify the following findings: 

(1) As seen from Table 2, the values of the MSE and MAE indicate that the 
forecasting ability of PSO-LSSVM model is better than the GARCH model. The 
PSO-LSSVM model can better capture the non-linear characteristics of the AI index 
returns, and has the pros of non-linear mapping, self-learning and self-organization, 
which is observed to outperform the advantage of the GARCH model in its ability to 
capture the time-varying and volatility clustering characteristics of the AI index 
returns.  

(2) Compared with the single model, the decomposition integration models 
usually perform better in their forecasting ability of the AI index returns. Specifically, 
as shown in Table 2, the values of MSE and MAE always indicate that the forecasting 
results of EEMD-GARCH and EEMD-PSO-LSSVM model are significantly better 
than the corresponding models that do not apply the EEMD algorithm. This result 
shows that the single model is greatly affected by the characteristics of the data itself 
such that their prediction ability is weaker. But the EEMD method can account for the 
periodicity, randomness and trend characteristics of the AI index, and decompose the 
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original sequence into simple modes effectively, so that we can obtain stable IMFs 
components and residual term and improve the accuracy of forecasting.  

(3) The new hybrid models according to the methods above always perform the 
best. As seen from Table 2, the values of the two loss functions involving the two 
hybrid models are significantly lower than the single model, indicating that the hybrid 
models can consider the linear and non-linear characters of the AI index returns, and 
combine the advantages of the PSO-LSSVM model and GARCH model, thereby 
obtaining superior forecasting performance compared to the single model. Specifically, 
the values of MSE and MAE of the hybrid models are significantly reduced compared 
to other models, and the mean combination model (i.e., the B model) usually performs 
best among all the models considered. 

Table 2. 1-day ahead forecasting results for the daily log-returns of the AI index 
 MSE MAE 

GARCH 1.3760 0.8885 
PSO-LSSVM 1.3530 0.8807 

EEMD-GARCH 0.6745 0.6277 
EEMD-PSO-LSSVM 0.6738 0.6375 

EEMD-PSO-LSSVM-GARCH(A) 0.6433 0.6089 
EEMD-PSO-LSSVM-GARCH(B) 0.6423 0.6087 

Note: The numbers in the table refer to the values of the two loss functions. Bold numbers indicate that the 
corresponding models have the lowest forecasting losses. 
4.3 Robustness checks 

There may be some uncertainties affecting the central results above; therefore, 
two kinds of robustness checks are conducted in terms of data frequency and sample 
periods.  

To determine whether our findings are robust to the frequency of the data, we use 
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weekly data to re-estimate the models, with the specific periods of training- and 
testing-samples being 12/19/2017-08/23/2020 and 08/24/2020-07/26/2021, 
respectively, given the full-sample of 12/19/2017-07/26/2021.  

As seen from Table 3, the values of the MSE and the MAE of the 
EEMD-GARCH and EEMD-PSO-LSSVM are lower than the GARCH and 
PSO-LSSVM model without the EEMD method. It shows that the EEMD method can 
effectively decompose the AI index return series with the noise, so that we can obtain 
more accurate data for the following prediction process. Hence, as with daily data, the 
decomposition-integrated forecasting models are better than the single models at a 
weekly frequency too. Further, the hybrid models also yield superior forecasting 
performance than other models. Specifically, the MSE and MAE values of the hybrid 
models (A and B models) are significantly lower, and the mean combination model (B 
model) performs best among all models. 

Table 3. 1-week ahead forecasting results for weekly log-returns of the AI index  
 MSE MAE 

GARCH 5.6166 1.8659 
PSO-LSSVM 5.8967 1.9826 

EEMD-GARCH 2.7728 1.2973 
EEMD-PSO-LSSVM 2.7412 1.3188 

EEMD-PSO-LSSVM-GARCH(A) 2.7085 1.2966 
EEMD-PSO-LSSVM-GARCH(B) 2.6995 1.2869 

Note: The numbers in the table refer to the values of the two loss functions. Bold numbers indicate that the 
corresponding models have the lowest forecasting losses. 

In summary, under the new data frequency, the forecasting performance of new 
hybrid models is significantly superior to the single model, as with daily data. In 
particular, compared to the EEMD-PSO-LSSVM-GARCH(A) model, the forecasting 
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accuracy of EEMD-PSO-LSSVM-GARCH(B) model that considers 
mean-combination is better, indicating its suitability for the AI index returns 
forecasting. In short, the new hybrid methods can describe the non-linearity and 
non-stationary characteristics of the AI returns series more comprehensively, and 
combine the advantages of different single models and obtain forecasts that contains 
the important predictive information contained in each model, as defined by their 
specific characteristics. Overall, our results are robust across high- and low 
frequencies of data. 

Next, to determine whether different sample periods can affect our findings, we 
select a new sample period of 07/26/2018-07/26/2021 to re-estimate the models, and 
the corresponding in-sample and out-of-sample periods are chosen to be 
07/26/2018-11/25/2020 and 11/26/2020-07/26/2021, respectively. The results of the 
1-day ahead forecasting under this new set-up are presented in Table 4. By comparing 
the results from the two loss functions, we find that the forecasting results of the 
decomposition-integration models are superior to the single model. Besides, 
compared to other models, the two new hybrid models continue to achieve better 
forecasting performance. In summary, the central results obtained above are also 
robust to different sample periods.  

Table 4. 1-day ahead forecasting results for daily log-returns of the AI index under 
alternative sample periods 

 MSE MAE 
GARCH 1.1642 0.8452 

PSO-LSSVM 1.2654 0.8807 
EEMD-GARCH 0.6614 0.6239 

EEMD-PSO-LSSVM 0.6674 0.6146 
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 MSE MAE 
EEMD-PSO-LSSVM-GARCH(A) 0.5855 0.5935 
EEMD-PSO-LSSVM-GARCH(B) 0.5592 0.5902 

Note: The numbers in the table refer to the values of the two loss functions. Bold numbers indicate that the 
corresponding models have the lowest forecasting losses. 
 
5. Conclusions and future work 

In order to forecast the AI index returns accurately, and judge which type of 
model can better predict the AI index return, this paper, for the first time, attempts to 
combine machine learning techniques with traditional econometric models based on 
“decomposition-integration” and “model combination” methods, so as to deeply 
explore the intrinsic structural characteristics of the returns associated with the AI 
index. Specifically, the EEMD method is used for decomposition and integration, and 
the basic single models in this paper include the PSO-LSSVM and GARCH models. 
Some main conclusions are drawn as follows: 

First of all, the EEMD decomposition and integration method significantly 
improves the forecasting performance of single models of the AI index returns. This is 
mainly because the EEMD method can obtain more stable and simple mode, and fully 
consider the periodicity, randomness and trend characteristics of the AI index returns, 
thereby obtaining more accurate forecasting results driven by features of the data. In 
addition, the result is valid no matter for the PSO-LSSVM model or the GARCH 
model, which further proves the applicability of the decomposition and integration 
method to the AI index returns.  

Second, regardless of whether we use daily or weekly data and different sample 
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periods, the forecasting performances of the GARCH model and the PSO-LSSVM 
model are not significantly different, and the final hybrid model (i.e., 
EEMD-PSO-LSSVM-GARCH) that combines these frameworks can significantly 
improve the forecasting performance of single models. This result shows that the 
traditional econometric model is suitable for describing the time-varying 
characteristics in the AI index return, while the machine learning model can better 
capture the nonlinear characteristics. And the final hybrid model can effectively 
combine their advantages, thereby capturing the time-varying and non-linear 
characteristics of the data simultaneously and obtaining superior forecasting results 
than single models. 

The conclusions above have clear implications for financial-market participants. 
Specifically, the relevant investors can utilize the EEMD-PSO-LSSVM-GARCH 
model to capture and mine more data characteristics of the AI index returns and make 
more accurate forecasting decisions, which can provide important reference for them 
to target investment opportunities in the artificial intelligence industry. In addition, the 
conclusions above are also conducive to the healthy development of financial markets, 
especially the artificial intelligence industry, involving financial market risk 
management, option pricing, and asset allocation.  

In the future, there is still much interesting work to be explored regarding the 
artificial intelligence industry. In particular, we can further explore the 
influence-factors for the artificial intelligence index, and analyze the characteristics of 
the artificial intelligence industry in further detail so as to construct an accurate 
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explanatory variables-based forecasting framework, which in turn can help investors 
further grasp the investment opportunities in the artificial intelligence industry. 
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