Ioan, Cătălin Angelo

Article
An unified consumption and production model for a closed economy

Provided in Cooperation with:
Danubius University of Galati

This Version is available at:
http://hdl.handle.net/11159/3070

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: rights@zbw.eu
https://www.zbw.eu/econis-archiv/

Terms of use:
This document may be saved and copied for your personal and scholarly purposes. You are not to copy it for public or commercial purposes, to perform, distribute or otherwise use the document in public. If the document is made available under a Creative Commons Licence you may exercise further usage rights as specified in the licence.

Standard-Nutzungsbedingungen:
An Unified Consumption and Production Model for a Closed Economy

Cătălin Angelo Ioan¹, Gina Ioan²

Abstract: The article presents an unified consumption and production model for a closed economy.

Keywords: consumption, production, utility

JEL Code: E17; E27

1. Introduction

Let consider n goods: G₁, ..., Gₙ whose elasticity of utility is constant, their prices being p₁, ..., pₙ. For a consumer whose available income is V, the utility function corresponding to the consumption of xₚ units of good Gₚ, p=1, n: \(U(x_1, ..., x_n) = Ax_1^{\alpha_1}x_2^{\alpha_2}...x_n^{\alpha_n} \) where \(\alpha_p \) is the elasticity of utility in relation to the good Gₚ, and A is a positive constant.

The issue of maximizing the utility relative to the restriction: \(\sum_{k=1}^{n} p_k x_k \leq V \) is:

\[
\begin{align*}
\max U(x_1, ..., x_n) \\
\sum_{k=1}^{n} p_k x_k \leq V \\
x_1, ..., x_n \geq 0
\end{align*}
\]

Considering the Lagrangeian:

\[
\Phi(x_1, ..., x_n, \lambda) = U(x_1, ..., x_n) + \lambda \left(\sum_{k=1}^{n} p_k x_k - V \right)
\]

the maximum condition with restrictions must satisfy:

\[
\begin{align*}
\frac{\partial \Phi}{\partial x_j} &= \frac{\partial U}{\partial x_j} + \lambda p_j = 0, j = 1, n \\
\frac{\partial \Phi}{\partial \lambda} &= \sum_{j=1}^{n} p_j x_j - V = 0 \\
-\sum_{j=1}^{n} \frac{\alpha_j Ax_1^{\alpha_1}x_2^{\alpha_2}...x_n^{\alpha_n}}{\lambda} x_j - V &= 0 \iff \frac{Ax_1^{\alpha_1}x_2^{\alpha_2}...x_n^{\alpha_n}}{\lambda} \sum_{j=1}^{n} \alpha_j + V = 0
\end{align*}
\]

¹ Associate Professor, PhD, Danubius University of Galati, Romania, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.
² Senior Lecturer, PhD, Danubius University of Galati, Romania, E-mail: ginaioan@univ-danubius.ro.
\[
A x_1^{\alpha_1} \cdots x_n^{\alpha_n} \sum_{j=1}^{n} \alpha_j = \lambda V.
\]

By re-replacing, we get the optimal solution to the problem:

\[
x_j^* = \frac{\alpha_j V}{p_j \sum_{j=1}^{n} \alpha_j}, \quad j = 1, n
\]

Let us also consider a producer with a number of K capital units, having the price of \(p_K\) and L workers whose hourly wage is \(w\) for a working time \(t\). If the elasticity of production in relation to capital and labor are constant, the function of production is: \(Q(t,K,L) = CK^\beta L^\gamma\) where \(\beta\) and \(\gamma\) are the elasticities of production in relation to the capital, respectively the labor, \(C\) being a constant.

Total cost of production: \(CT = p_K K + twL\) leads to a gross profit corresponding to a sales price \(p\):

\[
\pi(t,K,L) = pQ(t,K,L) - CT = CpK^\beta L^\gamma - p_K K - twL.
\]

For a given production \(Q_0\), the profit maximization condition returns to minimizing the total cost, so to the problem:

\[
\begin{align*}
&\min (p_K K + twL) \\
&\text{subject to: } CK^\beta L^\gamma = Q_0
\end{align*}
\]

Considering the Lagrangeian:

\[
\Phi(x_1,\ldots, x_n, \lambda) = p_K K + twL + \lambda (CK^\beta L^\gamma - Q_0)
\]

the minimum condition with restrictions must satisfy:

\[
\begin{align*}
\frac{\partial \Phi}{\partial K} &= p_k + \lambda \beta CK^\beta - L^\gamma = 0 \\
\frac{\partial \Phi}{\partial L} &= tw + \lambda \gamma CK^\beta - L^\gamma = 0 \\
\frac{\partial \Phi}{\partial \lambda} &= CK^\beta L^\gamma - Q_0 = 0
\end{align*}
\]

\[
\begin{align*}
L^* &= Q_0 \left(\frac{p_K}{C} \right)^{\beta \gamma} \\
K^* &= Q_0 \left(\frac{p_K}{C} \right)^{-\gamma \beta}
\end{align*}
\]

and the minimum total cost:

\[
CT^* = Q_0 \left[p_k \left(\frac{p_K \gamma}{C \beta tw} \right)^{\beta \gamma} + tw \left(\frac{p_K \gamma}{C \beta tw} \right)^{-\gamma \beta} \right].
\]

The maximum profit is:
\[\pi(t,K^*,L^*) = pQ_0 - \frac{Q_0}{C} \left(p_K \left(\frac{p_K \gamma}{\beta tw} \right)^\beta + tw \left(\frac{p_K \gamma}{\beta tw} \right)^\beta \right) \]

2. The Model

Suppose there are a number of \(n \) firms: \(F_1, ..., F_n \) each having a number of \(L_i \) employees, \(i=1, n \) where we will include, for simplification, the entrepreneur of the firm. Let \(w_i \) - the average hourly wage for \(F_i \), \(t_i \) - the working time during the analysis period in \(F_i \). We will also assume that \(F_i \) produces a single good (of constant elasticity): \(G_i \) whose sales price is \(p_i \).

From the total revenue received, each employee pays a tax quota to the state budget \(\chi \).

For health insurance, pensions and other services that will later be paid back to employees, they pay a share \(\xi \) of the salary received. Let us consider the providers of these services (a single service \(G_{n+j} \) for each firm) as being the firms \(F_{n+1}, ..., F_{n+m} \) each having \(L_{n+j} \), \(j=1, m \) employees (including the entrepreneur), with \(w_{n+j} \) - the average hourly wage corresponding to the company \(F_{n+j} \) and \(t_{n+j} \) - the working time worked during the analysis period in \(F_{n+j} \). The service price offered by \(F_{n+j} \) will be \(p_{n+j} \).

Therefore, the tax paid by each employee will be: \(T_i = \chi w_i t_i \), \(i=1, n+m \) and for public services: \(T_i = \xi w_i t_i \), \(i=1, n+m \).

The revenues available to \(F_i \) staff are therefore (for each individual employee): \(V_i = (1-\chi-\xi)w_i t_i \), \(i=1, n+m \).

On the other hand, the amount of salaries received by service providers comes from the share \(\xi \) therefore: \(\xi \sum_{i=1}^{n+m} w_i t_i L_i = \sum_{j=1}^{m} w_{n+j} t_{n+j} L_{n+j} \) or: \(\sum_{j=1}^{m} w_{n+j} t_{n+j} L_{n+j} = \frac{\xi}{1-\xi} \sum_{i=1}^{n} w_i t_i L_i \).

The entrepreneur of \(F_i \), \(i=1, n+m \) will allocate the profits made for investments that will be considered as goods produced by firms. Let us consider the output of \(F_i \) as: \(Q_i(t,K_i,L_i) = C_i K_i^\beta L_i^\gamma \) where \(\beta \) and \(\gamma \) represent the constantly assumed elasticities of production relative to \(K_i \), respectively \(L_i \), \(C_i \) - positive constant. At a price of capital \(p_{K_i} \), the total cost of production in \(F_i \) becomes: \(CT_i = p_{K_i} K_i + t_i w_i L_i \).

Therefore, at a sale price \(p_i \) of the \(G_i \) asset, \(F_i \)'s profit is:

\[\pi_i = p_i Q_i(t,K_i,L_i) - p_{K_i} K_i - t_i w_i L_i = p_i C_i K_i^\beta L_i^\gamma - p_{K_i} K_i - t_i w_i L_i \]

The \(F_i \)'s firm's entrepreneur income will therefore be just that \(\pi_i, i=1, n+m \).

Let considering the set \(S \) of social assistants (pensioners, people without income etc.) with a number of \(M \) people whose incomes represents a share \(\rho \) of the taxes paid by employees (the remainder being allocated to government consumption, public works etc.). Their income will therefore be:

\[\rho(\text{TP}_b + \text{TS}_b) = \rho \gamma \sum_{i=1}^{n+m} w_i t_i L_i \] and the average income per person:

\[\frac{\rho \gamma \sum_{i=1}^{n+m} w_i t_i L_i}{M} \]
In the following, we will consider that the utility function of any employee of a production, service or social assistance company will be the same for all consumers within the category (it may be different from company to company – as an example, the utility of books is different for employees of an educational establishment and another for meat producers). In addition, we will assume that all the production of a company will be sold.

Consider the utility functions for an employee of F_i: $\bar{U}_i(x_{i1}, \ldots, x_{i,n+m}) = A_i x_{i1}^{a_1} \ldots x_{i,n+m}^{a_{n+m}}, \ i=1,n+m$ where x_{ij} represents the quantity of good G_j consumed by an employee of F_i and for social assistants: $\bar{U}_s(x_1, \ldots, x_{n+m}) = A x_1^{a_1} \ldots x_{n+m}^{a_{n+m}}$ where x_j represents the amount of good G_j consumed by a social assistant.

The utility functions of the entrepreneurs in the investment activity will be:

$$\tilde{U}_j(y_{i1}, \ldots, y_{in}) = B_j y_{i1}^{\delta_1} \ldots y_{in}^{\delta_n}, \ i=1,n+m$$

where y_{ij} represents the amount of good G_j consumed by the F_i's entrepreneur.

Every employee and entrepreneurs want to maximize their utilities in the context of disposable income, so problems arise:

\begin{equation}
\begin{align*}
\max_{n+m} \bar{U}_i(x_{i1}, \ldots, x_{i,n+m}) &= A_i x_{i1}^{a_1} \ldots x_{i,n+m}^{a_{n+m}} \\
\sum_{k=1}^{n+m} p_k x_{ik} \leq (1 - \chi - \xi) w_i t_i & \quad \text{for company employees } F_i, \ i=1,n+m; \\
x_{i1}, \ldots, x_{i,n+m} &\geq 0
\end{align*}
\end{equation}

\begin{equation}
\begin{align*}
\max_{n+m} \bar{U}_s(x_1, \ldots, x_{n+m}) &= A x_1^{a_1} \ldots x_{n+m}^{a_{n+m}} \\
\sum_{k=1}^{n+m} p_k x_k \leq \frac{\rho \chi}{M} \sum_{i=1}^{n+m} w_i t_i & \quad \text{for social assistants;} \\
x_{1}, \ldots, x_{n+m} &\geq 0
\end{align*}
\end{equation}

\begin{equation}
\begin{align*}
\max \tilde{U}_j(y_{i1}, \ldots, y_{in}) &= B_j y_{i1}^{\delta_1} \ldots y_{in}^{\delta_n} \\
\sum_{k=1}^{n} p_k y_{ik} \leq p_j C_i K_i^{\gamma_i} L_i^{\gamma_i} - p_j K_i - t_i w_i L_i & \quad \text{for entrepreneurs.} \\
y_{i1}, \ldots, y_{in} &\geq 0
\end{align*}
\end{equation}

It follows from the above that the optimum quantities of products are:

- $x_{ij}^* = \frac{\alpha_j (1 - \chi - \xi) w_i t_i}{p_j \sum_{k=1}^{n+m} \alpha_k}, j=1,n+m$ - for company employees $F_i, \ i=1,n+m$;
- $x_j^* = \frac{\alpha_j \frac{\rho \chi}{M} \sum_{i=1}^{n+m} w_i t_i}{p_j \sum_{k=1}^{n+m} \alpha_k}, j=1,n+m$ - for social assistants;
- $y_{ij}^* = \frac{\delta_j p_j C_i K_i^{\gamma_i} L_i^{\gamma_i} - p_j K_i - t_i w_i L_i}{p_j \sum_{k=1}^{n+m} \delta_{ik}}, j=1,n+m$ - for entrepreneurs.
Therefore, the amount of required G_j needed is:

$$Q_j = \sum_{i=1}^{m+n} L_i x_{ij}^* + M \sum_{i=1}^{m+n} y_{ij}^* =$$

$$\frac{1 - \chi - \xi}{p_j} \sum_{i=1}^{m+n} L_i \alpha_j w_{ij} t_i + \frac{\rho \chi \alpha_j (m + n) \sum_{i=1}^{m+n} w_i t_i L_i}{p_j} + \frac{1}{p_j} \sum_{i=1}^{m+n} \delta_j p_i C_i K_i^{\gamma_j} L_i^{\gamma_j} - p_k K_i - t_i w_i L_i, \quad j = l, n + m .$$

Returning to the problem of maximizing F_j's profit for the quantity Q_j we have:

$$\begin{cases}
\text{min} \left\{ p_k K_i + t_i w_i L_i \right\} \\
C_j K_i^{\gamma_j} L_i^{\gamma_j} = Q_j , \quad j = l, n + m \\
K_j L_j \geq 0
\end{cases}$$

from where:

$$\begin{cases}
L_j^* = \frac{Q_j}{C_j \left(\frac{p_k}{\beta_j t_j w_j} \right)^{\gamma_j}} \\
K_j^* = \frac{Q_j}{C_j \left(\frac{p_k}{\beta_j t_j w_j} \right)^{\gamma_j}}
\end{cases}$$

Noting for simplicity:

$$s_i = w_i t_i, \quad r_i = \frac{\alpha_j s_i}{n + m}, \quad u_j = \frac{\rho \chi (m + n) \alpha_j}{n + m}, \quad v_i = \frac{\delta_j p_i C_i}{n + m}, \quad z_i = \frac{p_k}{n + m}, \quad f_i = \frac{s_j}{n + m},$$

$$g_j = \left(\frac{p_k}{\beta_j t_j w_j} \right)^{\gamma_j} \Rightarrow p_k \frac{\gamma_j}{\beta_j t_j w_j} = g_j \left(C_j p_j \right)^{\gamma_j}$$

from where:

$$\begin{cases}
L_j^* = \frac{g_j}{C_j p_j} \left(1 - \chi - \xi \right) \sum_{i=1}^{m+n} r_i L_i^* + u_j \sum_{i=1}^{m+n} s_i L_i^* + \sum_{i=1}^{m+n} \left(v_i K_i^{\gamma_j} L_i^{\gamma_j} - z_i K_i^{\gamma_j} - f_i L_i^{\gamma_j} \right) \\
K_j^* = \frac{g_j}{C_j p_j} \left(1 - \chi - \xi \right) \sum_{i=1}^{m+n} r_i L_i^* + u_j \sum_{i=1}^{m+n} s_i L_i^* + \sum_{i=1}^{m+n} \left(v_i K_i^{\gamma_j} L_i^{\gamma_j} - z_i K_i^{\gamma_j} - f_i L_i^{\gamma_j} \right)
\end{cases}$$

we find that:

$$\begin{cases}
L_j^* = \sum_{i=1}^{m+n} g_j \left(1 - \chi - \xi \right) r_i L_i^* + u_j \sum_{i=1}^{m+n} s_i L_i^* + \sum_{i=1}^{m+n} \left(v_i K_i^{\gamma_j} L_i^{\gamma_j} - z_i K_i^{\gamma_j} - f_i L_i^{\gamma_j} \right) \\
K_j^* = \sum_{i=1}^{m+n} g_j \left(1 - \chi - \xi \right) r_i L_i^* + u_j \sum_{i=1}^{m+n} s_i L_i^* + \sum_{i=1}^{m+n} \left(v_i K_i^{\gamma_j} L_i^{\gamma_j} - z_i K_i^{\gamma_j} - f_i L_i^{\gamma_j} \right)
\end{cases}$$

or, in other words:

$$\begin{cases}
L_j^* = \sum_{i=1}^{m+n} g_j \left(1 - \chi - \xi \right) r_i s_i + u_j \sum_{i=1}^{m+n} g_j v_i K_i^{\gamma_j} L_i^{\gamma_j} - \sum_{i=1}^{m+n} g_j z_i K_i^{\gamma_j} \\
K_j^* = \sum_{i=1}^{m+n} g_j \left(1 - \chi - \xi \right) r_i s_i + u_j \sum_{i=1}^{m+n} g_j v_i K_i^{\gamma_j} L_i^{\gamma_j} - \sum_{i=1}^{m+n} g_j z_i K_i^{\gamma_j}
\end{cases}$$
Noting again:

- \(Y_{1,ij} = g_j \left(t_j (1 - \chi - \xi) + u_j s_i - f_i \right) \)
- \(Y_{2,ij} = g_j v_{ij} \)
- \(Y_{3,ij} = g_j z_i \)
- \(Y_{4,ij} = \gamma_j \left(C_j p_j \beta_j \right)^{\gamma_j - 1} \left(t_j (1 - \chi - \xi) + u_j s_i - f_i \right) \)
- \(Y_{5,ij} = \gamma_j \left(C_j p_j \beta_j \right)^{\gamma_j - 1} v_{ij} \)
- \(Y_{6,ij} = \gamma_j \left(C_j p_j \beta_j \right)^{\gamma_j - 1} z_i \)

we obtain:

\[
\begin{align*}
L_j &= \sum_{i=1}^{m+n} Y_{1,ij} L^*_i + \sum_{i=1}^{m+n} Y_{2,ij} K^*_i L^*_i - \sum_{i=1}^{m+n} Y_{3,ij} K^*_i, \\
K^*_i &= \sum_{j=1}^{m+n} Y_{4,ij} L^*_i + \sum_{j=1}^{m+n} Y_{5,ij} K^*_i L^*_i - \sum_{j=1}^{m+n} Y_{6,ij} K^*_i
\end{align*}
\]

The system solution will provide the optimal number of employees of each firm as well as the required capital.

On the other hand, provided that: \(\sum_{j=1}^{m+n} w_{n+j} l_{n+j} L_{n+j} \) follows:

\[
\sum_{j=1}^{m+n} w_{n+j} l_{n+j} L_{n+j}^* = \frac{\xi}{1 - \xi} \sum_{i=1}^{n} w_i t_i L^*_i.
\]

By replacing the above optimal solutions, we obtain the link between the two quotas (the only ones that are imposed at government level): \(\chi \) (tax) and \(\xi \) - for health insurance, pensions and other services.

3. References
