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ABSTRACT

Owing to its simplicity and less restrictions, the vector autoregressive with exogenous variable (VARX) model is one of the statistical analyses frequently 
used in many studies involving time series data, such as finance, economics, and business. The VARX model can explain the dynamic behavior of the 
relationship between endogenous and exogenous variables or of that between endogenous variables only. It can also explain the impact of a variable 
or a set of variables on others through the impulse response function (IRF). Furthermore, VARX can be used to predict and forecast time series data. 
In this study, PTBA and HRUM energy as endogenous variables and exchange rate as an exogenous variable were studied. The data used herein were 
collected from January 2014 to October 2017. The dynamic behavior of the data was also studied through IRF and Granger causality analyses. The 
forecasting data for the next 1 month was also investigated. On the basis of the data provided by these different models, it was found that VARX (3,0) 
is the best model to assess the relationship between the variables considered in this work.

Keywords: Vector Autoregressive Model, Vector Autoregressive with Exogenous Variable Model, Granger Causality, Impulse Response Function, 
Forecasting 
JEL Classifications: C32, Q4, Q47

1. INTRODUCTION

Currently, the development of communication technology and the 
globalization of the economy have accelerated the integration of 
world financial markets. The aim of empirical economic analysis is to 
investigate the economics dynamic and its mechanisms. To this end, 
relevant economic data are needed (Gourieroux and Monfort, 1997). 
Price movement in one market can easily spread to other markets. 
Therefore, financial markets are more dependent on each other and 
must be considered jointly to better understand the dynamics of 
global finance (Tsay, 2005; 2014). The vector autoregressive (VAR) 
model plays an important role in modern techniques of analysis, 
especially in economics and finance (Hamilton, 1994; Kirchgassner 
and Wolters, 2007). The VAR model was introduced by Sims (1980) 

as a method to analyze macroeconomic data. He developed the VAR 
model as an alternative to the traditional system, which involved 
several equations (Kirchgassner and Wolters, 2007). VAR is one of 
the most used research tools to analyze macroeconomic time series 
data in the last two decades. There are some advantages because of 
which the VAR model is commonly used to analyze multivariate 
time series: (1) The model is relatively easy to estimate, i.e., for 
a VAR model, LSE are asymptotically equivalent to the method 
of MLE and OLS; (2) the properties of the VAR model have 
been extensively discussed in the literature; (3) the VAR model 
is similar to multivariate multiple linear regression (Tsay, 2014). 
Sims stressed the need to drop the adhoc dynamic restrictions in 
regression models and to discard empirically implausible exogeneity 
assumptions (Sims, 1980). He also stressed the need to jointly 
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model all endogenous variables rather than one equation at a time 
(Kilian, 2011).

The VAR model is often used to describe the behavior of a 
variable over time (Al-hajj et al., 2017; Sharma et al., 2018). In 
this model, it is assumed that the current value can be expressed 
as a function of preceding values and a random error (Fuller, 
1985). Hence, VAR is an easy model to analyze multivariate time 
series data; the VAR model is also flexible, easy to estimate, and 
usually gives a good fit to the data (Juselius, 2006; Fuller, 1985, 
Tsay, 2014, Lutkepohl, 2005). The VAR model, which involves 
a normal distribution, has frequently been a popular choice as a 
description of macroeconomic time series data (Juselius, 2006). 
In a VAR model of order p, VAR (p), each component of vector 
Xt depends linearly on its own lagged values up to p periods as 
well as on the lagged values of all other variables up to lag p (Wei, 
1990; Lutkepohl, 2005; Tsay, 2005 and 2014; Kirchgassner and 
Wolters, 2007). The VAR model is extremely useful for describing 
and explaining the behavior of financial, business, and economic 
time series data and also for forecasting (Wei, 1990; Lutkepohl, 
2005; Al-hajj et al., 2017; Sharma et al., 2018). Forecasting is 
the primary objective in the analysis of multivariate time series 
data. Forecasting using the VAR model is simple because it can 
be conditioned by potential future paths of specified variables in 
the model. Furthermore, the VAR model can be used for structural 
analysis. In structural analysis, certain assumptions are imposed 
on the causal structure of the data under investigation, and the 
resultant causal impacts of unexpected shocks or innovations to 
specified variables are studied. These causal impacts are usually 
summarized in Granger causality and impulse response function 
(IRF) (Wei, 1990; Hamilton, 1994; Lutkepohl, 2005). As our study 
involves independent or exogenous variables, the VAR model can 
be easily extended to a VAR model with exogenous variable and 
referred to as the VAR with exogenous variable (VARX) model 
(Hamilton, 1994; Tsay, 2015). The VARX model is also called a 
dynamic model (Gourieroux and Monfort, 1997).

2. STATISTICAL MODEL

The assumption of the stationary state in time series data analysis 
is fundamental and must be checked before analyzing the data. 
Some methods are available to check the stationary state of the 
time series data based on data plots or through the augmented 
Dickey Fuller test (ADF test). The process of the ADF test is as 
follows (Brockwell and Davis, 2002; Tsay, 2005). Let x1, x2., xn 
be the time series, and assume that {xt} follows the AR(p) model 
with mean μ given by:

xt − µ = ϕ1 (xt−1 − µ) +….+ ϕp (xt−p − µ) + ɛt (1)

Where ɛt is white noise with mean 0 and variance σ2, and 
ɛt ~ WN (0, σ2). The model (1) can be written as:

∇ = + + ∇ + + ∇ +− − − +x x x xt t t p t p tφ φ φ φ0 1 1 2 1 1
* * * *...   (2)

Here,

φ µ φ φ0 11* ( ... )= − − − p
,

φ φ1
1

1* = −
=
∑ i
i

p

,

φ φj i
i j

p
* =

=
∑ ,

j = 2,3., p,

And ∇x x xt t t-1= −

The testing of the nonstationarity data of model (2) using the ADF 
or tau (τ) tests is conducted as follows. Ho: φ1 0* =  (nonstationary 
data) against Ha: φ1 0* <  (stationary data). The statistics test is 
(ADF test)

*
1

*
1̂ADF test( )

Ŝe


φ

φ
=  (3)

For the level of significance (α = 0.05), reject Ho if τ < −2.57 or 
if the P < 0.05 (Brockwell and Davis, 2002; Tsay, 2005).

Time series data in economics, finance, business, or social sciences 
are collected at equal time intervals, such as days, weeks, months, 
quarters, or years. In many cases, such time series data may have 
related variables of interest. Hence, to know a variable better, it must 
be explained by other variable(s). Therefore, the variables must be 
analyzed jointly (Wei, 1990; Hamilton, 1994; Lutkepohl, 2005; 
Pena et al. 2001). The reasons why the model presents these time 
series together (Pena et al. 2001) are (1) to understand the dynamic 
relationship between the time series and (2) to improve the forecast’s 
accuracy. Apart from these reasons, the structure of the relationship 
between the time series data could also be of interest. Maybe, there 
are hidden factors responsible for the dynamic improvement of time 
series data. Let {x1t}, {x2t}.,{xkt} t = 0, ±1, ±2., k time series data 
taken at equal time intervals, and Γt = { x1t, x2t., xkt}, where Γt is 
also called a k-dimensional vector time series (VTS). The analysis 
of VTS data has been extensively discussed in the literature (Wei, 
1990; Lutkepohl, 2005; Tsay, 2005). If the mean of E (xit) = μi is 
constant for each i = 1, 2., k and the cross covariance between xit 
and xjs for all i = 1, 2., k and j = 1, 2., k is a function of only the 
time difference ts. Therefore, the equation is.

E t

k

( )
:

Γ = =



















µ

µ
µ

µ

1

2  (4)

And the covariance matrix is:

∑ (k) = Cov (Гt, Гt+m) = E[(Гt−µ) (Гt+m−µ)’]

= 

γ γ γ
γ γ γ

λ γ

11 12 1k
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(m) (m) ... (m)

(m) (m) ... (m)

: : : :

(m) (m) .... (m)kkγ



















= Cov (Гt+m, Гt) (5)

Where,
γij (m) = E (Xit−µi) (Xi, t+m−µj) = E (Xi, t-m−µi) (Xj,t−µj)
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2.1. VAR (p) and VARX (p,q) Models
The general VAR (p) model is as follows:

Гt = Φ1 Гt−1 + Φ2 Гt−2 +….+ Φp Гt−p + Et (6)

Or

(I− Φ1 B− Φ2 B
2−…− Φp B

p) Гt = Et (7)

Where Bj Гt = Гt−j and j = 1, 2., p. Φs lm
s= 



φ( ) is matrix k × k and 

s = 1, 2., p.

2.2. Condition for Stationary
Rewriting VAR (p) as VAR (1)
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Then, VAR (p) can be rewritten as VAR (1):

ξt = F ξt−1 + vt (8)

Condition for stationary proposition (Hamilton, 1994)

The Eigen value of matrix F satisfies

|In λ – Φ1 λ
p−1 − Φ2 λ

p−2 −…− Φp| = 0

And it is covariance stationary as long as |λ| < 1 for all values of 
λ. Otherwise, equivalently, the VAR is covariance stationary if 
all values of z satisfy

|In – Φ1 z − Φ2 z
2 −…− Φp z

p| = 0

The root are lies outside the unit circle.

The correlation matrix for the vector process is as follows.

ρ (m) = D−½∑ (m) D−½ = [ρij (m)].

I = 1, 2., m; j = 1, 2., m,

D=[diag [γ11(0), γ22(0),…, γmm(0)],

and

ρ
γ

γ γij
ij

ii jj
1/2

(m)=
(m)

[ (0) (0)]
 (9)

Represents the cross-correlation function between xit and xjt.

A basic assumption in model (1) is that the error vector following 
multivariate white noise is as follows:

E(εt) = 0.

E
if t s

if t st s( )  ′ =
=
≠





Σ
0

.

A VAR process can be affected by an exogenous variable, which 
can be stochastic or nonstochastic. The VAR process can also be 
affected by the lag of the exogenous variables.

The VARX (p,q) model is expressed by the following equation.
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2.3. Economic Test for Granger Causality
Here, we perform econometric tests of whether a particular 
observed series Y Granger-Causes X can be based on the following 
model (Hamilton, 1994) to let a particular autoregressive lag 
length p and estimate.

Xt =  ct + α1 Xt−1+ α2 Xt−2+….+ αp Xt−p+ β1 Yt−1+ β2 Yt−2+…. 
+ βp Yt−p+ ut (11)

Through  OLS assumpt ion ,  the  nu l l  hypothes i s  i s 
H0: β1 = β2 =… βp = 0; hence, Sum squared Residual from model 
(11) is calculated as

RSS1 = 2

1

ˆ
T

t
i

u
=
∑

Under null hypothesis, the model is

Xt = c0 + γ1 Xt−1+ γ2 Xt−2+….+ γp Xt−p+ εt (12)

To calculate Sum squared residual from model (12), we use

RSS0 = 2

1

ˆ
T

t
i


=
∑

Finally, the statistics test provides

F = 
(RSS -RSS )/p

RSS /(T-2p-1)
o 1

1

 (13)

Ho is rejected if F > F0.05; (p, T−2p−1).
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2.4. IRF
The VAR model can be written in vector MA (∞) as

Xt = µ0 + εt+ Ψ1 εt−1+ Ψ2 εt−2….

Thus, the matrix Ψs is interpreted as

∂
∂ ′

=+Xt s

t
s

Ψ

The row i, column j element of Ψs identifies the effects of an 
increase with one unit in the jth variable’s innovations at date t ( jt ) 
for the value of the ith variable at time t + s (Xi, t + s), while 
maintaining all other innovations at constant dates. If the first 
element of ϵt is changed by δ1, the second element is simultaneously 
changed by δ2, and the nth element is changed by δn; then, the 
combined effect of these changes on the value of vector Xt + s would 

be ∆ ΨX
X X X

t s
t s

t

t s

t

t s

nt
n s+

+ + +=
∂
∂

+
∂
∂

+ +
∂
∂

=
ε

δ
ε

δ
ε

δ δ
1

1
2

2 ... .  (14)

A plot of the row i, column j element of Ψs is

∂
∂

+Xi t s

jt

,


,

Where in a function of s is called IRF.

2.5. Forecasting
Forecasting is one of the main objectives in the analysis of 
multivariate time series data. Forecasting in a VAR (p) model is 
basically similar to forecasting in a univariate AR (p) model. First, 
the basic idea in the process of forecasting is that the best VAR 
model must be identified using certain criteria for choosing the 
best model. Once the model is found, it can be used for forecasting. 
Similarly, the VARX (p,q) model (10) with the parameters ϕi for 
i = 1, 2., p and φjfor j = 1, 2., q in equation (10) is assumed to be 
known. The best predictor, in terms of minimum mean squared 
error, for Γt + 1 or 1−step forecast based on the available data at 
time T is as follows.

1| 1 2 1 1

0 1 1

ˆ ˆ ˆˆ ...

ˆ ˆ ˆ...

T T T T p T p

T T q T q

c+ − − +

− −

Γ = + φ Γ + φ Γ + + φ Γ

+φ Ψ + φ Ψ + + φ Ψ  (15)

Forecasting for longer durations, for example h-step forecast, can 
be obtained using the chain rule of forecasting as expressed below.

| 1 1| 2 2| |

0 | 1 1| |

ˆ ˆ ˆˆ ...

ˆ ˆ ˆ...

T h T T h T T h T p T h p T

T h T T h T q T h q T

c+ + − + − + −

+ + − + −

Γ = + φ Γ + φ Γ + + φ Γ

+φ Ψ + φ Ψ + + φ Ψ  (16)

3. RESULTS AND DISCUSSION

The data used in this study are HRUM energy and PTBA closing 
price, which were collected from January 2014 to October 2017 
(LQ45a, 2018; LQ45b, 2018). The data Exchange Rate are also 
taken from January 2014 to October 2017 (Bank Indonesia, 2018). 
The data HRUM energy and PTBA are adopted from LQ45, and 
the Exchange Rate is adopted from the Bank Indonesia. The plot 
of these data is given in Figure 1.

From Figure 1, it can be seen that the data for Exchange rate, 
PTBA, and HRUM energy are nonstationary. The data for PTBA 
from January 2014 to October 2015 show an increasing trend, 
those from October 2015 to January 2016 show a decrease; in 
the data from January 2016 to September 2016 the trend still 
decreases, and from September 2016 to October 2017 the trend 
is flat, but with significant fluctuations. The data for HRUM 
energy from January 2014 to January 2016 shows a decreasing 
trend; for the data from January 2016 to September 2016 the trend 
increases, and from September 2016 to October 2017 the trend 
is flat, but with fluctuations. The data for the Exchange Rate 
from January 2014 to May 2015 shows an increasing trend, 
which slowly decreases and fluctuates from May 2015 to May 
2016; this trend is finally flat from May 2016 to October 2017. 
Data analysis conducted using the ADF test shows nonstationary 
data (Table 1). The next step is to differentiate the data to make 
them stationary in mean. Figure 2 shows the data obtained after 
differentiation with d = 1.

By differentiation with d = 1, the HRUM energy and PTBA data 
become stationary. To find the best model, several models, namely, 
VARX (1) – VARX (5), were compared and the information 
criteria AICC, HQC, AIC, and SBC were used. The best fit was 
correlated with the smallest values of those criteria, which are 
listed in Table 2.

Based on the values in Table 2, it is found that the best model 
is VARX (1,0), with the minimum value of SBC of 18.873. 
According to the HQC criteria, the best model is VARX (3,0), 
with a minimum value of 18.8516. The AICC and AIC criteria 
indicated VARX (4,0) as the best model, with minimum values of 
18.8140 and 18.8136, respectively. The schematic representation 
of parameter estimates for the VARX (1,0), VARX (3,0), and 
VARX (4,0) models are given in Table 3.

According to the data in Table 3, three parameters (AR1) are 
significant in the VARX (1,0) model, and six parameters (AR1−3) 
are significant (sign: – and +) in the VARX (3,0) and VARX (4,0) 
models. Because no parameters are significant in AR4, model 
VARX (3,0) is used as the best model for the data.

Model VARX (3,0) is expressed by the following equation.

Γ Γt t=





+

−
−






+
−

−
169 505

22 929

0 962 0 039

0 005 1 0704 1

.

.

. .

. .

00 039 0 681

0 001 0 144

0 061 0 777

0 004 0 0702

. .

. .

. .

. .

−
− −







+

−Γt




+
−
−







+

−Γ

Ψ

t

t t

3

0 008

0 001

.

.
  (17)

With

Σ =






72419 29 19 23

19 23 2023 68

. .

. .

Where Ψt = exchange ratet. Model VARX (3,0) can also be written 
as two univariate regression models:
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Table 1: ADF test for data PTBA and HRUM Energy before and after differentiation (d=1)
Variable Type Before differentiation After differentiation (d=1)

Rho P value Tau P value Rho P value Tau P value
PTBA Zero mean −0.17 0.6448 −0.21 0.6111 −1088.4 0.0001 −23.32 <0.0001

Single mean −4.74 0.4605 −1.50 0.5357 −1088.5 0.0001 −23.31 <0.0001
Trend −4.89 0.8286 −1.54 0.8159 −1089.3 0.0001 −23.30 <0.0001

HRUM Energy Zero mean −0.57 0.5561 −0.67 0.4272 −1003.0 0.0001 −22.37 <0.0001
Single mean −3.21 0.6313 −1.35 0.6065 −1003.2 0.0001 −22.36 <0.0001
Trend −3.64 0.9068 −1.53 0.8199 −1009.5 0.0001 −22.42 <0.0001

ADF: Augmented Dickey Fuller test

Table 2: Comparison of the criteria for VARX (1,0)–VARX (5,0) models
Information criteria VARX (1,0) VARX (2,0) VARX (3,0) VARX (4,0) VARX (5,0)
AICC 18.8360 18.8401 18.8202 18.8140* 18.8187
HQC 18.8517 18.8637 18.8516* 18.8531 18.8656
AIC 18.8359 18.8400 18.8199 18.8136* 18.8181
SBC 18.8773 18.9022 18.9029 18.9174 18.9427

Figure 1: Exchange rate, PTBA, and HRUM energy from January 2014 to October 2017

Figure 2: Residual plot, ACF, PACF, and IACF after differentiation with d = 1 for (a) PTBA and (b) HRUM energy data

a b
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Γ1t =  169.505 + 0.962 Γ1t−1 − 0.039 Γ2t−2 − 0.039 Γ1t−2 – 0.68 Γ2t−2 
+ 0.061 Γ1t−3 + 0.777 Γ2t−3 – 0.001 Ψt + ɛ2t (18)

And

Γ2t =  22.929 − 0.005 Γ1t−1 + 1.070 Γ2t−1 − 0.001 Γ1t−2 – 0.144 Γ2t−2 
+ 0.0004 Γ1t−3 + 0.070 Γ2t−3 – 0.008 Ψt + ɛ1t (19)

The statistical test results of the parameters in model (17) are 
presented in Table 4, and those for models (18) and (19) are 
presented in Table 5. The results of the statistical test indicate 
that model (18) is very significant, with the statistical test 
F = 12124.2 with P < 0.0001. The degree of determination, 
R-squared, is 0.9892. This means that 98.92% of the variation 
of Γ1t (PTBA) can be explained by lag variables of Γ1t − 1, Γ2t − 1, 
Γ1t − 2, Γ2t − 2, Γ1t − 3, Γ2t − 3 and Ψt (Exchange rate). According to 
the results obtained from the statistical test, model (19) is very 
significant, with the statistical test F = 25452.8 and P < 0.001. The 
degree of determination, R−Squared, is 0.9948. This means that 
99.48% of the variation of Γ2t (HRUM Energy) can be explained 
by the lag variables of Γ1t − 1, Γ2t − 1, Γ1t − 2, Γ2t − 2, Γ1t − 3, Γ2t − 3 and 
Ψt (Exchange rate).

3.1. IRF
In economics, IRF is used to describe how economics reacts over 
time to the exogenous impulse, which economists usually call 
shock and model in the context of VAR. Figure 3 shows the IRF 
shock in exchange rate. One standard deviation in the exchange 
rate causes PTBA to respond negatively and increase up to 2 years. 
The minimum effect occurs in lag 0 (the 1st day) with the value 
about −0.007 and shifts to zero (stable condition) up to 2 years 
(about 720 days (Figure 3a). Despite this, the negative impact of 
PTBA is extremely small yet considerably significant in these 
horizons until the 2nd year. The shock of one standard deviation in 
the exchange rate also causes HRUM energy to respond negatively 
and increase until the 2nd year (about 720 days). The minimum 
effect occurs in lag 0 (the 1st day) with the value about −0.001 and 
moves to zero (stable condition) up to 2 years (about 720 days 
(Figure 3b). Even so, the negative impact on HRUM energy is very 
small and close to zero yet highly significant in these horizons up 
to two years. Figure 4a shows the impulse in PTBA. The shock of 
one standard deviation in PTBA causes PTBA to respond positively 
and have significance for about 3 months, whereas from the third 
up to the 7 month, the response moves to zero (stable condition). 
Thus, the stable condition is reached up to the 7th month. It is 
interesting to see the behavior of the confidence interval between 
the third and 14th month when the volatility is high (Figure 4a). 
The impulse in PTBA seems to have an effect on the volatility of 
HRUM energy. Figure 4b shows that the HRUM energy is still 
stable around zero when a shock in PTBA was noticed, but the 
volatility is high up to one year after the shock in PTBA, which 
indicates that the closing price of HRUM energy fluctuates within 
one year following the shock in PTBA.

Figure 5a illustrates the IRF shock in HRUM energy. The shock 
of one standard deviation in HRUM energy causes PTBA to 

Table 3: Schematic representation of parameter estimates 
for the VARX (1,0), VARX (3,0), and VARX (4,0) models
Model Variable/lag C XL0 AR1 AR2 AR3 AR4
VARX (1,0) PTBA • • ++

HRUM • • •+
VARX (3,0) PTBA • • +• •– •+

HRUM • • •+ •– •+
VARX (4,0) PTBA • • +• •– +• ••

HRUM • • •+ •– •+ ••
+ : >2* Standard error, – : <–2* Standard error, •: is between, *: N/A

Table 4: Statistical test for the parameters used in model (17)
Equation Parameter Estimate Standard error t value P value Variable
PTBA CONST1

XL0_1_1
AR1_1_1
AR1_1_2
AR2_1_1
AR2_1_2
AR3_1_1
AR3_1_2

169.505
−0.008
0.962−
0.039−
0.039−
0.681
0.061
0.777

213.8244
0.01545
0.03251
0.19602
0.04519
0.28645
0.03241
0.19695

0.79
0.53
29.61
−0.20
−0.87
−2.38
1.89
3.95

0.4281
0.5935
0.0001
0.8409
0.3872
0.0176
0.0585
0.0001

1
Exchange 
rate (t)
PTBA (t-1)
HRUM (t-1)
PTBA (t-2)
HRUM (t-2)
PTBA (t-3)
HRUM (t-3)

HRUM CONST2
XL0_2_1
AR1_2_1
AR1_2_2
AR2_2_1
AR2_2_2
AR3_2_1
AR3_2_2

22.929
−0.001

−0.00357
1.07042

−0.00058
−0.14383
0.00400
0.07015

35.7438
0.00258
0.00543
0.03277
0.00755
0.04788
0.00542
0.03292

0.64
−0.49
−0.66
32.67
−0.08
−3.00
0.74
2.13

0.5214
0.6246
0.5116
0.0001
0.9391
0.0027
0.4604
0.0334

1
Exchange 
rate (t)
PTBA (t-1)
HRUM (t-1)
PTBA (t-2)
HRUM (t-2)
PTBA (t-3)
HRUM (t-3)

Table 5: Univariate diagnostic checks
Model Variable R_squared Standard deviation F value P value
(18) PTBA 0.9892 269.11 12124.2 <0.0001
(19) HRUM 0.9948 44.985 25452.8 <0.0001
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respond negatively for about 2 weeks; however, after that the 
impact is positive up to 2 years. The positive impact reaches 
maximum in about the 5th month, then it decreases to zero (stable 
condition) after 2 years (about 720 days). The impact is positive 
and very significant in the range of 2 weeks up to the 7 month 
because the confidence interval in this range does not include 

zero (Figure 5a). From the behavior of the confidence interval 
(Figure 5a), it can be observed that the volatility is very high. 
Hence, it can be concluded that in this horizon, the closing price 
after the shock of HRUM energy fluctuates significantly. The 
impact of impulse in HRUM energy causes HRUM energy to 
respond positively and tend to zero in 2 years (about 720 days). 

Figure 3: (a and b) Impulse response function in exchange rate

a b

Figure 4: (a and b) Impulse response function in PTBA

a b

Figure 5: (a and b) Impulse response function IRF in HRUM energy

a b
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The impact up to the 6th month is positive and has significance 
as zero is not included in the confidence interval. However, 
from the 6th month up to 2 years, the impact is positive, but with 
no significance as zero is included in the confidence interval 
(Figure 5b).

3.2. Granger Causality
Table 6 shows that the Exchange rate does not induce Granger 
causality for PTBA and HRUM energy. The test is not significant 
with P value 0.7171 (>0.05). Yet, a null hypothesis is not rejected, 
and this result that is in line with those displayed in Table 4, where 
the XL0_1_1 and XL0_2_1 parameter, whose P values are 0.5935 
and 0.6246, respectively, are not significant. In Table 6, Test 2 
indicates that PTBA falls under the Granger causality for HRUM 
energy with P < 0.0001, whereas Test 3 shows that the HRUM 
energy does not obey the Granger causality rule for PTBA with 
P values of 0.8079.

3.3. Forecasting
Forecasting is a process that allows the estimation of an unknown 
future value that is used in predicting the future values in a time 
series of data. In this study, the VARX (3,0) model was used to 
forecast the 12 values (1 year prior) of PTBA and HRUM energy 
data. Figure 6. A shows that the VARX (3,0) model for PTBA fits 
very well with real data. The circle represents real data and the 
line represents the model. The predicted values and the confidence 
interval of 95% are given. Accordingly, the forecasting data of 

Figure 6: Prediction and forecasting of PTBA data

Figure 7: Prediction and forecasting of HRUM energy data

Table 6: Granger causality Wald test
Test Group DF Chi-square P value
Test 1 Group 1 variables: Exchange_rate

Group 2 variables: PTBA, HRUM
6 3.70 0.7171

Test 2 Group 1 variables: PTBA
Group 2 variables: HRUM energy

3 23.79 <0.0001

Test 3 Group 1 variables: HRUM energy
Group 2 variables: PTBA

3 0.97 0.8079
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PTBA for the next 30 days seems to slightly increase. Figure 7 
shows that the VARX (3,0) model for HRUM energy also fits very 
well with real data. As for the PTBA data, the circle represents the 
real values whereas the line represents the model. The predicted 
values and the confidence interval of 95% are given. It can be 
affirmed that the forecasting data of HRUM energy for the next 
30 days also seems to increase.

4. CONCLUSION

Based on the results of the analysis of the relationship between the 
endogenous (PTBA and HRUM energy) and exogenous variables 
(Exchange rate), the VARX (3,0) model was found to be the best 
model for the relationship among these variables. The univariate 
models deduced from the VARX (3,0) model are very significant. 
On the basis of the IRF analysis, it was concluded that, if there 
is a shock in the Exchange rate, then the shock of one standard 
deviation in the Exchange rate causes PTBA and HRUM energy to 
produce a negative response up to 2 years before reaching a stable 
state (zero effect). Shock of one standard deviation in PTBA causes 
PTBA to respond positively and attain a stable condition after the 
7th month. It seems that the impulse in PTBA has an effect on the 
volatility of HRUM energy; however, the HRUM energy is still 
stable and close to zero when a shock in PTBA occurs. Shock of 
one standard deviation in HRUM energy causes PTBA to respond 
negatively for about 2 weeks, but after that the impact is positive 
up to 2 years. The behavior of the confidence interval showed that 
the volatility is very high.

Therefore, it can be concluded that in this horizon, the closing price 
after the shock of HRUM energy fluctuates greatly. The impact 
of impulse in HRUM energy causes HRUM energy to respond 
positively and tend to zero in 2 years.
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