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ABSTRACT 

Timely monitoring of the housing market developments in Lithuania is one of the key elements in the analysis 
framework of the macroprudential authority aiming to contribute to financial stability in Lithuania. In this 
paper, we addressed three important questions related to Lithuanian house prices, namely, whether house 
prices are under- or over valuated, which explanatory variables have the biggest impact on the growth of 
house prices and what the future development of the Lithuanian house price index could be. Three separate 
modelling and forecasting exercises were performed in order to tackle these questions. The first exercise 
employs the vector error correction modelling (VECM) approach to assess under- or overvaluation of the 
house prices. We then use an autoregressive distributed lag model (ARDL) to evaluate which explanatory 
variables have the biggest impact on house price growth. As the last exercise, we develop a suite of models 
that are used to forecast future development of the house price index. The analysis presented in this paper 
may be viewed as a further step towards more formalised modelling and forecasting of the Lithuanian house 
price index. 

JEL: C22, C32, C53, E37, R30 

Keywords: House price index, fundamental value, time series models, forecasting, forecast combination 
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1. INTRODUCTION 

The Global Financial Crisis showcased how increase in house price volatility may affect real economic activity 
and induce stress in the financial system. The Lithuanian housing market was very buoyant during the boom 
years and then declined sharply in 2009. This had huge negative consequences for households with mortgage 
loans, banks that experienced deterioration of their balance sheets, the construction and real estate sector, 
and the overall economy. Therefore, timely monitoring of housing market developments in Lithuania is one of 
the key elements in the analysis framework of the macroprudential authority contributing to financial stability 
in Lithuania. 

From the macroprudential perspective, there are three main questions regarding house price developments 
that are important for warranted and timely policy actions. First, policymakers need to assess whether the 
house prices are in line with their fundamentals and identify periods of under- or overvaluation of house 
prices. The second crucial question relates to identification of those fundamentals and other major drivers of 
house price changes. And lastly, policymakers need to form forecasts of future developments of house prices. 
In this paper, we address all these questions by undertaking three separate modelling and forecasting 
exercises. The first exercise employs the vector error correction modelling (VECM) approach to assess under- 
or overvaluation of house prices. We then use an autoregressive distributed lag model (ARDL) to evaluate 
which explanatory variables have the biggest impact on house price growth. As the last exercise, we develop a 
suite of models that are used to forecast the future development of the house price index. 

We develop a VECM model, which is used primarily to assess the long-term econometric equilibrium 
relationship between house prices and other macroeconomic variables (namely, real interest rates, 
construction costs, credit and investment imbalance1 and household indebtedness indicator), as well as 
analyse the impact of shocks to fundamental and non-fundamental variables on the house price dynamics. 
The model could also be used for house price forecast error decomposition, historical shock decomposition, 
unconditional and conditional forecasting and other analytical purposes. An alternative, ARDL modelling 
approach allows us to examine a broader array of indicators that can be useful in explaining house price 
dynamics. The results reveal that interest rates on new loans to households and building permits are among 
the key factors for changes in house prices, whereas other variables, such as number of housing transactions, 
house price to income ratio, etc., have a smaller impact on the dependent variable. In the forecasting 
exercise, various univariate and multivariate time series models are employed to build a suite of models. For 
robustness checks and in order to reduce model uncertainty we consider several forecast combination 
approaches that improve forecasting accuracy compared to individual models. We suggest that the 
combination of forecasts could be used to predict future changes in the Lithuanian housing price index. 

The outline of this paper is as follows: Section 2 provides some theoretical background for housing market 
modelling. Section 3 contains a brief presentation of relevant empirical literature on house price modelling and 
forecasting. Section 4 outlines the historical developments of the Lithuanian house price index. Section 5 
describes estimation of the fundamental house price. Section 6 provides ARDL modelling results. In Section 7 
we describe a suite of models used to forecast the house price index. The last section concludes. 

 

2. DISCUSSION ABOUT THE FUNDAMENTALS OF HOUSE PRICE DEVELOPMENT 

We begin our analysis by presenting a theoretical framework for housing market modelling. A commonly used 
theory for the drivers of house prices in the analysis of house prices has been the life-cycle model (see, e.g., 
Poterba, 1984; Muellbauer & Murphy, 1997; Meen, 2002; Anundsen, 2016). This approach centres on a 
representative agent that maximises lifetime utility with respect to consumption of housing and composite 

                                                

1 Ratio of new housing loans to nominal housing investment. 
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consumption good. The marginal rate of substitution between these two goods satisfies the following 
equilibrium condition: 

 
𝑼𝑼𝑯𝑯

𝑼𝑼𝑪𝑪
= 𝑷𝑷𝑷𝑷𝒕𝒕 �(𝟏𝟏 − 𝜽𝜽𝒕𝒕)𝒊𝒊𝒕𝒕 − 𝝅𝝅𝒕𝒕 + 𝜹𝜹 − 𝔼𝔼 �

𝚫𝚫𝑷𝑷𝑷𝑷𝒕𝒕+𝟏𝟏

𝑷𝑷𝑷𝑷𝒕𝒕
�� (1) 

where 𝑈𝑈𝐻𝐻 is the marginal utility of housing goods (𝐻𝐻), 𝑈𝑈𝐶𝐶 is the marginal utility of composite consumption 
goods (𝐶𝐶), 𝑃𝑃𝑃𝑃𝑡𝑡 represents house prices. Time-varying tax rates, mortgage interest rates, and inflation rate are 
denoted by 𝜃𝜃𝑡𝑡, 𝑖𝑖𝑡𝑡, and 𝜋𝜋𝑡𝑡, respectively. 𝛿𝛿 is the housing depreciation rate and 𝔼𝔼[Δ𝑃𝑃𝑃𝑃𝑡𝑡+1 𝑃𝑃𝑃𝑃𝑡𝑡⁄ ] is the expected 
real capital gain. Equation (1) states that the marginal rate of substitution between housing and other goods is 
equal to what it costs to own one more unit of a property, measured in terms of forgone consumption of other 
goods. 

Market efficiency also requires the following arbitrage relationship to be satisfied in equilibrium: 

 𝑸𝑸𝒕𝒕 = 𝑷𝑷𝑷𝑷𝒕𝒕 �(𝟏𝟏 − 𝜽𝜽𝒕𝒕)𝒊𝒊𝒕𝒕 − 𝝅𝝅𝒕𝒕 + 𝜹𝜹 − 𝔼𝔼 �
𝚫𝚫𝑷𝑷𝑷𝑷𝒕𝒕+𝟏𝟏

𝑷𝑷𝑷𝑷𝒕𝒕
�� (2) 

where Qt is the real imputed rent on housing services. This implies that price-to-rent ratio is proportional to 
the inverse of the user cost: 

 
𝑷𝑷𝑷𝑷𝒕𝒕

𝑸𝑸𝒕𝒕
=

𝟏𝟏
𝑼𝑼𝑼𝑼𝒕𝒕

 (3) 

where 𝑈𝑈𝑈𝑈𝑡𝑡 is the real user cost defined by: UCt = (1 − θt)it − πt + δ − 𝔼𝔼[ΔPHt+1 PHt⁄ ]. Poterba (1984) interprets 
relationship (3) as an inverted housing stock demand function. In the literature, unobservable real imputed 
rent is approximated by observable rent 𝑅𝑅𝑡𝑡 or it is assumed that it is proportional to income and the housing 
stock. The first assumption leads to: 

 
𝑷𝑷𝑷𝑷𝒕𝒕

𝑹𝑹𝒕𝒕
=

𝟏𝟏
𝑼𝑼𝑼𝑼𝒕𝒕

 (4) 

Instead, it can be assumed that imputed rent is determined by the following expression: 

 𝑹𝑹𝒕𝒕 = 𝒀𝒀𝒕𝒕
𝜷𝜷𝒚𝒚𝑯𝑯𝒕𝒕

𝜷𝜷𝒉𝒉,𝜷𝜷𝒚𝒚 > 𝟎𝟎,𝜷𝜷𝒉𝒉 < 𝟎𝟎 (5) 

where Y is households’ income and H is housing stock. This leads to the following equation: 

 
𝑷𝑷𝑷𝑷𝒕𝒕

𝒀𝒀𝒕𝒕
𝜷𝜷𝒚𝒚𝑯𝑯𝒕𝒕

𝜷𝜷𝒉𝒉
=

𝟏𝟏
𝑼𝑼𝑼𝑼𝒕𝒕

 (6) 

Equations (4) and (6) are then used as a starting point from which econometric models of house prices are 
built. In empirical analysis many authors use the semi-logarithmic model to evaluate house price 
developments:   

 𝒑𝒑𝒑𝒑𝒕𝒕 = 𝜷𝜷𝒚𝒚𝒚𝒚𝒕𝒕 + 𝜷𝜷𝒉𝒉𝒉𝒉𝒕𝒕 + 𝜷𝜷𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝒕𝒕 (7) 

where expected signs of the coefficients are: 𝛽𝛽𝑦𝑦 > 0 and 𝛽𝛽ℎ ,  𝛽𝛽𝑈𝑈𝑈𝑈 < 0. 

Equation (7) can also include additional determinants of house prices. For example, Anundsen & Jansen 
(2013) argue that credit is also an important variable, which can determine house price developments. In 
their paper, the authors use the following expression: 

 𝒑𝒑𝒑𝒑𝒕𝒕 = 𝜷𝜷𝒚𝒚𝒚𝒚𝒕𝒕 + 𝜷𝜷𝒉𝒉𝒉𝒉𝒕𝒕 + 𝜷𝜷𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝒕𝒕 + 𝜷𝜷𝒅𝒅𝑫𝑫𝒕𝒕 (8) 

where D is households’ debt and the expected sign of the coefficient is: βd > 0. 
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Equations (7) and (8) can be estimated empirically, which would result in the so-called fundamental house 
price. Large positive and systematic deviations of actual house prices from the estimated fundamental value 
can be considered as an indication of unsustainable developments (overvaluation) in house prices. 

 

3. DISCUSSION ABOUT HOUSE PRICE MODELLING AND FORECASTING 

The empirical literature on house price modelling and forecasting consists of two broad streams. One part of 
the literature tries to estimate the relationship between house price development and other macroeconomic 
variables or tries to estimate fundamental house prices. The other part of the literature tries to forecast house 
price development in the future. Even though authors may use similar models, for example, the vector 
autoregressive model (VAR), the difference is that they put emphasis either on in-sample fit or on out-of-
sample forecasting performance. 

Studies examining the fundamental house price usually involve variables from the demand equation, because 
there is an assumption that the supply of housing is relatively inelastic in the short or medium term. The 
estimation of the fundamental house price allows one to determine periods of booms and busts in the housing 
development. In such studies, authors use an error correction model (ECM) or vector error correction model 
where the level of house prices is often linked to household income, interest rate, mortgage lending, 
demographic and labour market variables. For example, de Haas & de Greef (2000) use an ECM model for the 
Dutch housing market and find that house prices depend on bank lending, even controlling for household 
income, mortgage interest rate, and other important variables. The authors also find that house prices can 
deviate significantly from their long term fundamental value, and the adjustment process can take a few 
years. Oikarinen (2008) uses VECM models for Finland’s data and also finds that two-way interaction between 
house prices and credit is very important because this relationship can amplify the boom-bust cycle in the 
economy and increase instability in the financial sector. Similarly, Greiber & Setzer (2007) observe that excess 
liquidity can fuel house prices in the US. 

Other approaches are also used to estimate boom and bust periods or the deviation from the fundamental 
house prices. For example, Kajuth et al. (2013) apply panel regression for Germany’s administrative districts 
and take the regression residuals as a measure for deviations of actual house prices from their fundamental 
equilibrium level. Gerdesmeier et al. (2012) take a less common approach to detect boom and bust episodes 
in the euro area housing market. The authors apply quantile regression and find that beside variables such as 
disposable income, user cost rate and unemployment rate, it is useful to include credit variables in the 
specification as they help explain the boom/bust cycle of house prices. Anundsen (2016) considers four 
alternative econometric methods (for example, tests based on ADF-test statistic) to construct indicators of 
housing market imbalances for the US, Finland and Norway. He estimates that only one of the measures 
indicates imbalances in the Finnish housing market, whereas none of the measures suggest a bubble in 
Norway. 

Some authors in the literature analyse the relationship between house prices and other determinants in order 
to estimate the response of the house prices to changes in those variables. Katrakilidis & Trachanas (2012) 
study dependence of house prices on macroeconomic variables in Greece using asymmetric autoregressive 
distributed lag methodology. Their results reveal significant differences in the response of house prices to 
positive or negative changes of the explanatory variables in both the short and long term. Many authors apply 
some kind of VAR type model to assess the impact of monetary policy shock to house prices. Carstensen et al. 
(2009) analyse 12 European Union countries using a panel VAR model, Eickmeier & Hofmann (2010) and 
Gupta et al. (2010) employ a factor-augmented VAR (FAVAR) model to the US and South Africa data, 
respectively, Jarociński & Smets (2008) use Bayesian VAR models for the US data and Robstad (2014) apply 
such models for the Norwegian data. Most of the authors conclude that house price response to a monetary 
policy shock is negative and persistent. In addition, Carstensen et al. (2009) show that in countries with a 
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more pronounced reaction of house prices the propagation of monetary policy shocks to macroeconomic 
variables is amplified. Meanwhile, Gupta et al. (2010) find that responses are heterogeneous across the 
affordable, middle and luxury segments of the housing market. 

Another broad stream in the literature focuses on the out-of-sample forecasting performance of the models. 
Authors explore a wide range of models, from univariate models, like the autoregressive moving average 
model (ARMA) (Barari et al., 2014) or the ARDL model (Rapach & Strauss, 2007), to multivariate models like 
VAR, BVAR (Das et al., 2011; Gupta & Miller, 2009) or large scale models like dynamic factor models (DFM) 
(Emiris, 2016), FAVAR models (Gupta et al., 2009) and various other model classes. The choice of variables 
as predictors for house prices is similar as in the modelling literature, i.e. macroeconomic, monetary, and 
demographic fundamentals are used in the models. In general, several lessons can be learned from these 
studies. 

Firstly, taking into account additional variables improves the forecasting accuracy of an autoregressive model. 
For example, an de Meulen et al. (2011) show that ARDL and VAR models with additional macroeconomic 
variables outperform autoregressive model. Secondly, Gupta et al. (2009) find that a small scale BVAR model 
is more accurate than a large scale BVAR model. They conclude that only a few fundamental variables are 
important for house price developments. 

Furthermore, allowing estimated model parameters to vary over time gives better forecasting performance. 
Bork and Møller (2015) and Risse and Kern (2016) use dynamic model averaging (DMA) and dynamic model 
selection (DMS) and conclude that forecasting accuracy improves substantially when the entire forecasting 
model is allowed to change over time. Similarly, Barcilar et al. (2015), with a smooth transition autoregressive 
model (STAR), and Kouwenberg & Zwinkels (2014), with a smooth transition VECM model, show that smooth 
transition models in an out-of-sample forecasting assessment perform better than competing standard static 
AR or VECM models. 

Lastly, forecast combination can address the issues of unknown data generating process and model 
uncertainty. Forecast combination is gaining popularity in the empirical studies, where this approach has been 
found to frequently outperform forecasts from the best-performing model in real time. Such results were 
found by Drought & McDonald (2011) for New Zealand’s, an de Meulen et al. (2011) for Germany’s and 
Rapach & Strauss (2007) for US house prices forecasting exercises. 

To summarise, many modern time series modelling and forecasting techniques have been used in the 
literature to analyse house price development in the past and to predict it in the future. None of the model 
class appears to be clearly superior to others. In general, the choice of modelling approach and its empirical 
estimation depends on the research question and on the quality and availability of data. 

 

4. DYNAMICS OF LITHUANIAN HOUSE PRICE INDEX 

The Lithuanian housing market developments and price index dynamics from the 2000s comprise several 
characteristic phases. A modern housing market, where banks more actively issued mortgage loans and 
investors began to participate beside individual buyers, emerged around 2000. The initial phase can be 
considered to span the period until May 2004 when Lithuania joined the European Union. Following this 
structural change, consumers, businesses and banks began to form very optimistic expectations with regard 
to economic progress, improvement in living standards and their rapid convergence to the level of incumbent 
EU member states. High economic growth bolstered by rising household incomes and strong consumer 
spending, as well as negative real lending rates and large credit flows directed towards the housing market – 
all of this contributed to a rapid increase in house prices, which lasted until its peak in Q2 2008 (see Fig. 1). 
During that period, the annual house price growth averaged 35.3%. The highest quarterly and annual growth 
figures (21.5% and 64.2%, respectively) were recorded in Q4 2005. The bust of the house prices coincided 
with the global financial crisis, which severely affected credit supply. Concurrently, general economic 
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conditions worsened significantly, denting affordability of housing and leading to a plummeting demand for 
housing. The house price trough was reached in Q1 2010, and peak-to-trough decline in house prices 
amounted to 38.5%. The largest negative quarterly change in house price index was recorded in Q1 2009 and 
equalled 20.0%. 

The post-crisis stagnation phase was between Q1 2011 and Q4 2013, when the house price index increased 
only by 3%. In Q3 2011, the Bank of Lithuania introduced the Responsible Lending Regulations (RLR), which 
limited borrowers’ loan-to-value (LTV) and debt service-to-income (DSTI) ratios, as well as the maximum loan 
duration. RLR restricted unsustainable borrowing which could then translate into house price growth. The most 
recent phase of development of the Lithuanian house price index, or a more pronounced price recovery phase, 
spanned the period from Q4 2013 until the end of the sample in Q2 2018. During this period, house prices 
continually exhibited positive annual growth rates. 

 

Fig. 1. Development of the Lithuanian house price index: level (left), quarterly growth (centre), annual 
growth (right) 
 

   

Due to the strongly expressed boom/bust cycle of the Lithuanian house price index, quarterly and annual 
growth rates are very volatile which makes modelling and forecasting quite challenging. During the sample 
period, i.e. from Q1 2002 to Q2 2018, the average quarterly growth rate was equal to 2.2% with a standard 
deviation of 6.3 p.p. At the same time, the average annual growth rate was equal to 10.4% with a standard 
deviation of 18.9 p.p. However, after the crisis volatility in the data has considerably decreased. Calculating 
quarterly and annual growth rates from Q1 2011 to the end of the sample we get the average quarterly 
growth of 1.2% (with standard deviation of 1.7 p.p.) and the average annual growth of 4.8% (with standard 
deviation of 3.4 p.p.). High volatility and a change in it could have an impact on confidence intervals of the 
estimated model coefficients and forecasts. 

 

5. FUNDAMENTALS OF THE LITHUANIAN HOUSE PRICE INDEX: VECM ANALYSIS 

In this section we develop a VECM model to assess the cointegrating relationship (or a long-term econometric 
equilibrium relationship) between house prices and other macroeconomic variables, as well as analyse the 
impact of shocks to fundamental and non-fundamental variables on house price dynamics. The model could 
also be used for house price forecast error decomposition, historical shock decomposition, unconditional and 
conditional forecasting and other analytical purposes. 
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5.1. ECONOMETRIC MODEL 

To estimate the VECM model we employ the standard Engle-Granger procedure (Engle & Granger, 1987). 
First, the cointegrating relationship among a number of I(1), i.e. integrated of order one, variables is 
estimated by ordinary least squares (OLS): 

𝒚𝒚𝟏𝟏𝟏𝟏 = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐𝒚𝒚𝟐𝟐𝟐𝟐 + ⋯+ 𝜷𝜷𝒏𝒏𝒚𝒚𝒏𝒏𝒏𝒏 + 𝜺𝜺𝒕𝒕 (9) 

Here 𝑦𝑦1𝑡𝑡 is the housing price variable, other 𝑦𝑦′s denote other macroeconomic variables and 𝜀𝜀𝑡𝑡 is a stationary 
error term. Using residuals 𝜀𝜀𝑡̂𝑡 from the estimated cointegrating relationship in dynamic equations of individual 
variables, one can formulate the error correction model. In matrix notation, it can be written as follows: 

∆𝒚𝒚𝒕𝒕 = 𝜶𝜶𝜺𝜺�𝒕𝒕−𝟏𝟏 + �𝜞𝜞𝒊𝒊∆𝒚𝒚𝒕𝒕−𝒊𝒊

𝒑𝒑−𝟏𝟏

𝒊𝒊=𝟏𝟏

+ 𝝐𝝐𝒕𝒕 (10) 

where 𝒚𝒚𝑡𝑡 = (𝑦𝑦1,𝑡𝑡,𝑦𝑦2,𝑡𝑡, … ,𝑦𝑦𝑛𝑛,𝑡𝑡) is a 𝑛𝑛 × 1 vector of endogenous variables and 𝜶𝜶 denotes a commensurately sized 

vector of adjustment parameters measuring how individual variables respond to last period’s deviations from 
the equilibrium. 𝜞𝜞𝑖𝑖 is an 𝑛𝑛 × 𝑛𝑛 coefficient matrix associated with i-th lag. Parameter p denotes the number of 
lags in the model’s VAR form. Model variables and the number of lags are chosen so as to ensure that model 
disturbances 𝝐𝝐𝑡𝑡 follow a multivariate normal distribution. Finally, ∆ denotes a difference operator. 

5.2. MODEL VARIABLES AND DATA 

Taking the inverse housing demand function as a starting point for our empirical analysis of house price 
determination, we expect house prices to be positively linked to rent prices, inflation and expectations of 
future growth of house prices and negatively linked to interest rates, as well as maintenance and depreciation 
rates. 

Though this inverse housing demand function, or housing user cost approach, forms the basis of much of the 
empirical research on house price fundamentals, there are some caveats associated with this approach and 
with interpretation of this relationship as fundamentals. First, “explaining” high house prices by expensive 
rents may be misleading because rents can also be procyclical and can strongly decline during a downturn in 
the housing market. Notably, this has been the case in Lithuania.  

Also, the formula suggests that high house prices can be justified by expected future house price growth. 
Given the element of reflexivity in this formulation, one has to be careful and distinguish whether these 
expectations are rational and reflect underlying structural developments or they are not fully rational and 
reflect subjective market sentiment. In fact, one of the most popular definitions of a house price bubble, 
formulated by Stiglitz (1990), suggests that a bubble exists if the reason that the price is high today is only 
because investors believe that the selling price will be high tomorrow – when “fundamental” factors do not 
seem to justify such a price. In this light it is logical in the empirical analysis to replace the unobserved and 
somewhat vague expectations variable with structural imbalances and other factors that are likely to drive 
house price growth. At the same time, house price inertia, adaptive expectations and bubble formation 
tendencies can be modelled by including house price lags in the model. 

Finally, in its pure theoretical form, the housing demand function leaves out credit. In reality, however, house 
prices and credit are strongly intertwined and it can be difficult to reasonably explain house price dynamics 
without taking into consideration developments in the credit market. So, if the aim is to explain actual house 
price dynamics using an empirical model, one should try to incorporate some credit-related variables (even 
though they are usually regarded as non-fundamental) in the model in addition to those that can be thought 
of as fundamentals. 

Because of the above-mentioned caveats and data issues, in our empirical analysis we had to depart quite far 
from the initial theoretical formulation (equation 7). The analysis was affected by the usual problem of short 
data series. Quarterly data spanned the period from Q4 2004 to Q2 2018 (a total of 55 observations), which 
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essentially included one very significant boom-bust cycle. Against the backdrop of huge cyclical variation, 
there were cases of very strong covariation between house prices and some other variables (e.g. rent prices), 
rendering a number of other reasonable candidate variables insignificant. With this in mind and given the lack 
of sufficient quality data on rent prices in Lithuania, we tried to proxy the rent price variable by demographic, 
household income, housing stock variables and other indicators that could potentially affect conditions in the 
rental market. However, none of them appeared significant and were therefore left out of the analysis. We 
tried to proxy unobserved expectations of house price dynamics by consumer and business confidence 
variables, construction price index, household indebtedness, variables reflecting imbalances between financial 
capital (housing loans) and physical investment, etc.  

The working version of the VECM model includes five variables: 

• House price index (denoted as hpi) 
• Real (HICP inflation-adjusted) lending rate on housing loans (r) 
• Construction cost price index (ccpi) 
• New housing loans to nominal housing investment ratio (credInv) 
• Existing housing loans to nominal GDP ratio (debtRatio) 

Data series are seasonally adjusted using Census X-13 seasonal adjustment procedure. All variables, except 
for the real loan rate, enter the model in logs. Application of the augmented Dickey-Fuller test confirms that 
all variables are nonstationary and integrated of order one.  

5.3. MODEL RESULTS 

As the first stage of the Engle-Granger procedure, we estimate the cointegrating relationship among selected 
variables (see Fig. 2). Applying the Engle-Granger test, the null hypothesis of no cointegration can be rejected 
at 10% significance level. Coefficient signs are as expected: house prices are negatively linked to real lending 
rates and positively related to all other variables in the cointegrating relationship, indicating that higher house 
prices are positively associated with higher construction costs, stronger credit flows and larger household 
indebtedness (see Table A1, Appendix A). The long-run sensitivity of house prices to real lending rates is 
moderate: a 1 p. p. increase is associated with a 1.1% decline in house price over the long run. Notably, 
house prices are found to be very sensitive to increases in construction costs, with elasticity of 1.54. 

 

Fig. 2. Cointegrating relationship: house price index and the fit from the estimated long-run relation 
(left) residuals from cointegrating relationship (right) 
 

  

Various model selection criteria (Akaike informatation criterion, Bayesian information criterion and the 
likelihood ratio test) suggest that the optimal number of lags to include in the VAR form of the model is two, 
which is equivalent to one lag in the VECM form. However, the Ljung-Box test indicates that residuals of the 
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house price equation in the resulting VECM model are autocorrelated. Attempting to tackle the problem but at 
the same time avoiding the need to estimate too many parameters associated with inclusion of additional 
lags, we tried adding individual lagged (exogenous or endogenous) variables to the model. The residual 
autocorrelation problem was corrected when we included the fourth lag of the household debt ratio. Thus, our 
working model is: 

∆𝒚𝒚𝒕𝒕 = 𝜶𝜶𝜺𝜺�𝒕𝒕−𝟏𝟏 + 𝜞𝜞𝟏𝟏∆𝒚𝒚𝒕𝒕−𝟏𝟏 + 𝜸𝜸∆𝒅𝒅𝒅𝒅𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒕𝒕−𝟒𝟒 + 𝝐𝝐𝒕𝒕 (11) 

where 𝒚𝒚𝑡𝑡 = (ℎ𝑝𝑝𝑝𝑝𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 ,  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡,  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡,  𝑟𝑟𝑡𝑡) and 𝜸𝜸 is the coefficient vector associated with the fourth lag of 
debtRatio variable. Since this variable is endogenous, we actually have a restricted VECM model – term 
𝜸𝜸∆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−4 can be equivalently expressed as 𝜞𝜞4∆𝒚𝒚𝑡𝑡−4, where the third column of parameter matrix 𝜞𝜞4 
equals 𝜸𝜸 and all other matrix elements are zero. 

Estimation results show that house prices are modestly pulled to the long-term equilibrium as they tend to 
correct around 9% of the deviation from the long-term equilibrium in the preceding quarter. The value of the 
error correction parameter is in line with typical values reported in the literature on house price fundamentals 
(where they range from ‒0.07 to ‒0.25), though in our case the parameter is not statistically significant. In 
contrast, the credit-investment imbalance variable (credInv) is strongly pushed away from the equilibrium 
values, suggesting that this imbalance is a significant source of instability in the system. The result is logical, 
because historically, as Lithuania’s house price bubble inflated, housing loans rose faster than investment and 
during the bubble deflation phase a drop in new housing loans was stronger than a decrease in housing 
investment. One more thing to note is that in the house price equation there is a strong autoregressive 
element – the positive coefficient associated with the lagged change in house prices, sometimes in the 
literature referred to as the “bubble generator” parameter, is large and significant, indicating inertia of house 
price movements and arguably a strong role of adaptive market expectations. 

The Granger representation theorem implies that our VECM model can be expressed as a nonstationary 
reduced-form VAR. This enables us to calculate impulse response functions. Generalised impulse responses of 
the house price variable to one standard deviation shocks to each variable are shown in Fig. 3. The house 
price variable is strongly positively affected by shocks to construction costs and the house price itself. The 
house price response to a change in credit-investment imbalance in the housing market is moderately 
positive. House prices negatively react to real lending rate and indebtedness shocks. The impulse responses 
can also be transformed into various multipliers. For example, the cumulative multiplier can be calculated as a 
cumulative impulse response of the response variable divided by a cumulative response of the shock variable 
to a shock to itself. As can be seen from Fig. 4, a 1% increase in construction costs is associated with a 1.6% 
increase in house prices, whereas a 1 p.p. rise in real lending rates leads to a 2% decline in house prices over 
the long run. 
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Fig. 3. Generalised impulse responses of house prices to one standard deviation shocks 

 

 

 

 

 

Fig. 4. Cumulative multipliers of house prices 
 

 

In order to identify structural (orthogonalised) shocks, we apply Cholesky decomposition procedure, which 
requires ordering variables from most endogenous to most exogenous. Based on the Granger causality 
analysis and economic considerations, we put the system’s variables in the following order: credInv, hpi, ccpi, 
debtRatio, and r. Structural shock identification enables us to perform shock decomposition analysis. The 
forecast error variance decomposition reveals the relative importance of various structural shocks in 
determining stochastic variation in house prices. Fig. 5 shows that in the very short term the variation in 
house prices is driven predominantly by structural shocks to the house price variable itself, whereas in the 
long run a significant fraction of house price variation is explained by structural shocks to construction costs 
and household indebtedness.  
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Fig. 5. House price forecast error variance decomposition 
 

 

Historical shock decomposition allows us to decompose the dynamics (more specifically, the change from the 
values observed at the start of the sample) of a given variable into a deterministic (nonlinear trend) 
component and the cumulative impact of individual structural shocks. The deterministic components of each 
variable represent the system’s dynamics in the absence of structural shocks, so they approximate the 
model’s long-term econometric equilibrium path. It is not the equilibrium or sustainable growth path in a strict 
economic sense because the trend depends on initial conditions and also on the “nonfundamental” variables 
included in the system. Nevertheless, the estimates of such trends reflect the variables’ “balanced” paths with 
regard to the rest of the system – the variables are beaten off of these paths by structural shocks to the 
system. As can be seen from Fig. 6, in 2006‒2008 house prices rose above their balanced path, then in 2008 
and 2009 abruptly fell well below it and starting from 2012 started gradually closing the gap from below. 
According to the model, house prices were still slightly below their econometric balanced path at the end of 
the sample, in 2018. 

 

Fig. 6. Deterministic component (nonlinear trend) of house price dynamics 
 

 

The model can also be directly applied for forecasting house prices (and other model variables), adding to the 
suite of specialised forecasting models described in the sections below. Notably, the model can be used for 
conditional forecasts and counterfactual analysis, which allows us to analyse the dynamics of the system 
subject to externally imposed restrictions on paths of selected variables. In this regard, we are specifically 
interested in assessing the impact of unbalanced credit and investment dynamics on house prices. If we 
assume a balanced credit and investment dynamics (set creditInv equal to zero), we get the result that excess 
credit flows may have raised house prices over the analysed period by about 40% (see Fig. 7). 
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Fig. 7. Unconditional and counterfactual house price trends 

 

 

 

6. DETERMINANTS OF THE HOUSE PRICE GROWTH AND SHORT TERM 
FORECASTING: ARDL MODEL 

In this section, we analyse the potential factors that determine the dynamics of Lithuanian house prices. We 
employ an ARDL model to evaluate house price changes and to make short term forecasts (up to four 
quarters). In this section, we follow the work of Rapach & Strauss (2007), who model and forecast the US 
house price dynamics. 

6.1. ECONOMETRIC MODEL 

Let 𝛥𝛥𝑦𝑦𝑡𝑡 =  𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1, where yt is the log level of Lithuanian house price index at time t. Then the growth rate of 
house price index from time 𝑡𝑡 to 𝑡𝑡 + ℎ (ℎ is the forecast horizon, which is four quarters in this exercise) 𝑦𝑦𝑡𝑡+ℎℎ  is 
defined as follows: 

 𝐲𝐲𝒕𝒕+𝒉𝒉𝒉𝒉 =
𝟏𝟏
𝒉𝒉�∆𝒚𝒚𝒕𝒕+𝒋𝒋

𝒉𝒉

𝒋𝒋=𝟏𝟏

 (12) 

Furthermore, let 𝒙𝒙𝑖𝑖,𝑡𝑡 (𝑖𝑖 = 1, … ,𝑛𝑛) represent potential determinants of house price growth rate. An ARDL model 

can be written as: 

 𝐲𝐲𝒕𝒕+𝒉𝒉𝒉𝒉 =  𝛂𝛂 + �𝜷𝜷𝒋𝒋𝚫𝚫𝒚𝒚𝒕𝒕−𝒋𝒋

𝒑𝒑

𝒋𝒋=𝟎𝟎

+ �𝜸𝜸𝒋𝒋𝒙𝒙𝒊𝒊,𝒕𝒕−𝒋𝒋

𝒒𝒒

𝒋𝒋=𝟎𝟎

+ 𝜺𝜺𝒕𝒕+𝒉𝒉𝒉𝒉  (13) 

where 𝜀𝜀𝑡𝑡+ℎℎ  is an error term. In this exercise, the ARDL model parameters were estimated using OLS and the 
model is used in two ways. First, we estimate the model with a full data sample in order to determine which 
variables made the biggest impact on house price growth. Second, equation 13 is used to construct a set of 
recursive (expanding estimation window) out-of-sample forecasts of 𝑦𝑦𝑡𝑡+ℎℎ  using information available at time 𝑡𝑡. 

Due to short time series, the lag length 𝑝𝑝 is set to 0, i.e. only Δyt is included in the equation. The lag length 𝑞𝑞 
can vary between 0 and 2. Furthermore, the number of determinants 𝒙𝒙𝑖𝑖,𝑡𝑡 can also vary between one to four 
predictors per model. In this way, we estimated a few thousand different ARDL models. 

6.2. EXPLANATORY VARIABLES 

Data availability in this modelling exercise determined the data sample which covers the period from Q2 2006 
to Q2 2018. We include 12 potential explanatory variables of house price growth rate which could be 
attributed to three main groups. Demand-related variables provide measures of the ability of households to 
purchase housing: 
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• Population 
• Unemployment rate 
• Wages 
• Consumer price index 
• Consumer confidence index 
• House price to income ratio 

Supply-related variables may reflect supply conditions in the housing market with a potential impact on house 
prices: 

• Building permits 
• Investment in real estate 
• Construction cost index 
• Number of housing transactions 

Meanwhile, bank credit related variables show households’ access to credit for housing purchases: 

• Interest rate on new loans for households 
• New loans for households 

In this modelling exercise the house price index and some of the explanatory variables were seasonally 
adjusted: wages, building permits, investment in real estate, construction cost index, number of housing 
transactions. Furthermore, all of the variables were transformed by taking first the differences of log levels to 
make them stationary, with the exceptions to unemployment rate, house price to income ratio and interest 
rate (which were taken in levels) and building permits, number of housing transactions and new loans for 
households (which were taken in log levels). 

In order to reduce the number of ARDL models, sign restrictions were applied on the estimated coefficients. A 
positive sign restriction was imposed on population, wages, consumer price index, consumer confidence index, 
construction cost index and new loans for households. A negative sign restriction was imposed on 
unemployment rate, building permits, investment in real estate and interest rate on new loans to households. 
The number of housing transactions and house price to income ratio were left unrestricted.  

6.3. MODEL EVALUATION AND COMBINATION 

All ARDL models were evaluated by their performance in various model accuracy testing procedures. First of 
all, we estimated all models using the full data sample and kept only those models that have coefficients in 
accordance with the sign restrictions mentioned above. Then the in-sample fit was examined by the mean 
absolute scaled error (MASE), sign accuracy, and p-value of the coefficients. Introduced by Hyndman & 
Koehler (2006), MASE is the mean absolute error of the fitted values, divided by the mean absolute error of 
the one-step naïve forecast: 

 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝑻𝑻
∑ � |𝒚𝒚𝒕𝒕−𝒇𝒇𝒕𝒕|

𝟏𝟏
𝑻𝑻−𝟏𝟏

∑ |𝒚𝒚𝒕𝒕−𝒚𝒚𝒕𝒕−𝟏𝟏|𝑻𝑻
𝒕𝒕=𝟐𝟐

�𝑻𝑻
𝒕𝒕=𝟏𝟏   (14) 

where 𝑦𝑦𝑡𝑡 is actual data and 𝑓𝑓𝑡𝑡 is fitted values. In our further analysis we kept models where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 1, which 
indicates a better accuracy compared to a simple one-step naïve forecast. Next, we compared the sign of the 
fitted value and actual data, i.e. we compared whether the growth of house prices or decline of it was 
captured. We put the restriction that sign accuracy is greater or equal to 0.75, which means that at least three 
times out of four, models correctly predicted the direction of the development. Lastly, we kept only those 
models for which the p-value of the least significant coefficient was lower than 0.5. 

Another model evaluation criterion was based on model performance during a crisis period. We re-estimated 
models from the start of the sample until Q3 2008 and forecasted four quarters ahead. Then we examined 
coefficient sign accuracy and retained only those models, which predicted decline in house prices at least in 
one quarter. 
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The last model evaluation criterion was based on model performance in the out-of-sample forecasting 
exercise. Initially, models were estimated using the data from the training sample, i.e. from Q2 2006 until Q4 
2011. Then the short-term (i.e. four quarters ahead) forecasts were calculated. All models were then re-
estimated on an incrementally expanding (by one quarter) data window to produce a new set of forecasts. 
The expanding window estimation was repeated until Q2 2017. Once again, we kept only those models that 
had the average forecast sign accuracy greater than 0.5, i.e. on average at least two times out of four 
correctly predicted the direction of the development. 

Only models that passed all accuracy testing procedures were used in the further analysis. Since it is not 
obvious which individual model is best suited for the analysis and short term forecasting, we applied model 
combination, which provided a way to incorporate information from several models. The model combination 
allows having more variables as explanatory variables compared to a single model and as noted by Rapach & 
Strauss (2007) helps improve forecasting accuracy. 

Individual ARDL models were combined into one model based on the out-of-sample average root mean 
squared errors (RMSE). More specifically, the weight of the model is calculated as follows: 

 𝒘𝒘𝒊𝒊 =  
(𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊)

∑ (𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊)𝑴𝑴
𝒊𝒊=𝟏𝟏

 (15) 

where 𝑤𝑤𝑖𝑖 is the weight of the individual model, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 is the average out-of-sample RMSE of the model, and 𝑀𝑀 
is the number of models. In this way, the model with the lowest forecast errors receives the highest weight. A 
combination of the in-sample fitted values gives insights to which variables had the biggest impact on house 
price growth in the past. Meanwhile, a combination of out-of-sample forecasts helps to explain which 
explanatory variables will affect future development. 

6.4. MODELING RESULTS 

Empirical estimation provided 18 individual ARDL models that passed all model evaluation criteria. The results 
from the estimated models were then aggregated into one weighted ARDL model. Fig. 8 shows which 
explanatory variables had the biggest impact on the deviation from the long term growth of house prices. Four 
variables were not included in any of the individual models: consumer price index, wages, population and 
unemployment rate. The figure shows that interest rate is one of the main drivers of house price 
developments. The low interest rate environment mainly caused the recent increase in house price growth. 
From the supply side variables, building permits had the biggest impact in the past. All other variables played 
a lesser role in affecting the dependent variable. The figure also reveals that quite a big part of the house price 
changes, especially during the crisis, is still left unexplained by the model. This may suggest that the actual 
decrease in growth could be attributed to changes in perception of the house value which could not be 
captured by any explanatory variables. Another possible explanation could be that the relationship between 
house price growth and other variables is more contemporaneous. However, given the forecasting purpose of 
the model, we could not include higher lags of the explanatory variables in the model. 
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Fig.8. Determinants of the house price growth in the past 
 

 

The combined ARDL model was also used to produce short term out-of-sample forecast. Fig. B1 (in Appendix 
B) shows the forecasts at different forecasting horizons. The results show that the model tends to overpredict 
the growth of house prices at the beginning of the forecasting sample. This result may come from the fact that 
data showed high volatility before and during the crisis, which may affect the size of the coefficients in the 
individual ARDL models. Nevertheless, at the end of the sample, combined ARDL forecasts are more accurate. 
Moving forward, we can expect better forecasting performance as a longer data sample will give better 
estimates of the model coefficients. 

 

7. SHORT AND MEDIUM TERM FORECASTING: FORECAST COMBINATION 

In this section, we present a suite of models aimed at forecasting the Lithuanian house price index in the short 
and medium term (up to ten quarters). We explore univariate and multivariate time series models and 
compare their performance by out-of-sample forecasting accuracy. Thus, this modelling exercise follows a 
stream of literature that focuses on the forecasting performance of the models. 

7.1. ECONOMETRIC MODELS  

The starting point of our forecasting exercise is a simple naïve forecast of the log level of the house price 
index. Thus, our benchmark model assumes that during the forecasting period the level of house price index 
will remain the same as the last observed value. All other models will be compared to this benchmark model. 

ARMA 

In a univariate case, the ARMA model is used, which is the most common empirical approach in modelling and 
forecasting time series data. The classical ARMA(p, q) model, where 𝑝𝑝 and 𝑞𝑞 denote the AR and MA orders, 
can be written as:  

 𝒚𝒚𝒕𝒕 = 𝐜𝐜 + 𝝓𝝓𝟏𝟏𝒚𝒚𝒕𝒕−𝟏𝟏 + ⋯+ 𝝓𝝓𝒑𝒑𝒚𝒚𝒕𝒕−𝒑𝒑 + 𝒆𝒆𝒕𝒕 + 𝜽𝜽𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏 + ⋯+ 𝜽𝜽𝒒𝒒𝒆𝒆𝒕𝒕−𝒒𝒒 (16) 

where yt is a variable of interest, c is a constant, 𝑒𝑒𝑡𝑡 is an error term, 𝜙𝜙1, …, 𝜙𝜙𝑝𝑝 and 𝜃𝜃1, …, 𝜃𝜃𝑞𝑞 are parameters of 

the model. The model is fitted using the maximum likelihood estimation method. 

The house price index is forecasted taking the AR order from 1 to 4 (𝑝𝑝 = 1, 2, 3, 4), and the MA order from 0 to 
2 (𝑞𝑞 = 0, 1, 2). Furthermore, each ARMA model specification is estimated taking house price index in log level, 
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quarterly growth rate, and annual growth rate. Overall, 36 different ARMA models were estimated and 
included in the suite of models. 

VAR 

Gupta et al. (2009) and an de Meulen et al. (2011) showed that including additional macroeconomic variables 
improves forecasting accuracy compared to autoregressive models. Therefore, VAR-type models are included 
in the suite of models for forecasting house price index. 

The classical VAR model with 𝑛𝑛 endogenous variables and 𝑝𝑝 lags was suggested by Sims (1980) and can be 
written as: 

 𝒀𝒀𝒕𝒕 = 𝑩𝑩𝟎𝟎 + 𝑩𝑩𝟏𝟏𝒀𝒀𝒕𝒕−𝟏𝟏 + 𝑩𝑩𝟐𝟐𝒀𝒀𝒕𝒕−𝟐𝟐 + ⋯+ 𝑩𝑩𝒑𝒑𝒀𝒀𝒕𝒕−𝒑𝒑 + 𝒖𝒖𝒕𝒕 (17) 

where 𝑌𝑌𝑡𝑡 = (𝑦𝑦1,𝑡𝑡 ,𝑦𝑦2,𝑡𝑡, … ,𝑦𝑦𝑛𝑛,𝑡𝑡) is a 𝑛𝑛 × 1 vector of endogenous variables, 𝐵𝐵0 is a 𝑛𝑛 × 1 vector of constant terms, 𝐵𝐵1, 
𝐵𝐵2, …, 𝐵𝐵𝑝𝑝 are 𝑛𝑛 × 𝑛𝑛 matrices of coefficients and 𝑢𝑢𝑡𝑡 is a 𝑛𝑛 × 1 vector of residuals, which follows a multivariate 

normal distribution, i.e. 𝑢𝑢𝑡𝑡  ~ 𝒩𝒩(0,Σ). Estimation of the model is done by the ordinary least squares (OLS) and 
forecasting is straightforward (see, e.g., Lütkepohl, 2005). 

The house price index is forecasted using seven alternative VAR model specifications (see Table 1). Due to 
data limitations and following Gupta et al. (2009), who found that small scale VAR-type models are more 
accurate than large scale models, we explore different specifications which include from four to six variables in 
the model. All specifications follow the same structure: the house price index is modelled with interest rate, 
lending to households, macroeconomic and labour market variables. 

 

Table 1. Estimated VAR model specifications 

Specification Variables 

Spec. 1 Real GDP House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

  

Spec. 2 Real GDP House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

HICP  

Spec. 3 Real GDP House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

HICP Unemployment 
rate 

Spec. 4 Disposable 
income 

House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

HICP  

Spec. 5 Disposable 
income 

House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

HICP Unemployment 
rate 

Spec. 6 Real private 
consumption 

House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

HICP  

Spec. 7 Real private 
consumption 

House price 
index 

Credit to 
households 

Interest rate 
on loans to 
households 

HICP Unemployment 
rate 

 

As in the case of autoregressive models, each VAR model specification is estimated taking endogenous 
variables in log levels (except interest rate and unemployment rate which are taken in percentages), quarterly 
growth rates (interest rate and unemployment rate are taken in quarterly changes) or annual growth rates 
(interest rate and unemployment rate are taken in annual changes). Furthermore, each specification is 
estimated taking the number of lags from 1 to 4, i.e. 𝑝𝑝 = 1, … , 4. Overall, 84 different VAR models were 
estimated and included in the suite of models. 
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BVAR 

Even though a VAR model is one of the main tools for macroeconomic modelling and forecasting, the 
estimation of these models poses certain challenges. The VAR model requires many parameters to be 
estimated because typically equal lag lengths for all variables are used, including many that are statistically 
insignificant. The rich parameterisation of VAR models (over-parameterisation problem) brings a risk of 
overfitting the data, inefficient estimates and possibly large out-of-sample forecasting errors. Consequently, 
this limits the endogenous variables and the number of lags, which can be included in the simple VAR model 
to avoid those problems. Litterman (1986) and many other authors used the Bayesian estimation of the VAR 
model (BVAR) to overcome the over-parameterisation problem. See, for example, Karlsson (2013) for 
extensive literature on forecasting using Bayesian VAR models. The Bayesian approach suggests a solution to 
this curse of dimensionality by introducing prior distributions on parameters of interest. According to Karlsson 
(2013), BVAR models usually show better forecasting performance compared to VAR models estimated with 
frequentist techniques.  

In Bayesian econometrics, every parameter of interest is treated as a random variable, characterised by some 
underlying probability distribution. In this study, we employ widely used Minnesota prior distributions 
(Litterman, 1986). Instead of eliminating lags, the Bayesian estimation imposes restrictions on the coefficients 
across different lag lengths. Minnesota priors take the fact that more recent values of a data series usually 
contain more information about the current value of the series than past values. Furthermore, it also takes the 
fact that past values of a given variable contain more information about its current state than past values of 
other variables. In this framework, it is assumed that the VAR residual variance-covariance matrix Σ is known 
and the only object left to estimate is the vector of coefficients 𝛽𝛽. It is assumed that 𝛽𝛽 follows a multivariate 
normal distribution: 

 𝜷𝜷𝒊𝒊𝒊𝒊 ~ 𝓝𝓝(𝟏𝟏,𝝈𝝈𝜷𝜷𝒊𝒊𝒊𝒊
𝟐𝟐 ) and 𝜷𝜷𝒊𝒊𝒊𝒊 ~ 𝓝𝓝(𝟎𝟎,𝝈𝝈𝜷𝜷𝒊𝒊𝒊𝒊

𝟐𝟐 ) (18) 

where 𝛽𝛽𝑖𝑖𝑖𝑖 denotes the coefficients associated with the lagged dependent variable in each equation of the VAR 
model, 𝛽𝛽𝑖𝑖𝑖𝑖 represents any other coefficient. The prior variances 𝜎𝜎𝛽𝛽𝑖𝑖𝑖𝑖

2  and 𝜎𝜎𝛽𝛽𝑖𝑖𝑖𝑖
2  specify uncertainty about the prior 

means. Based on Litterman (1986), for coefficients relating endogenous variables to their own lags, the 
variance is given by: 

 𝝈𝝈𝜷𝜷𝒊𝒊𝒊𝒊
𝟐𝟐 = �

𝝀𝝀𝟏𝟏
𝒍𝒍𝝀𝝀𝟑𝟑
�
𝟐𝟐

 (19) 

where 𝜆𝜆1  is an overall tightness parameter, 𝑙𝑙  is the lag considered by the coefficient, and 𝜆𝜆3  is a scaling 
parameter controlling the speed at which coefficients for lags greater than 1 converge to 0 with greater 
certainty. 

For parameters related to cross-variable lag coefficients, the variance is given by: 

 𝝈𝝈𝜷𝜷𝒊𝒊𝒊𝒊
𝟐𝟐 = �

𝝈𝝈𝒊𝒊𝟐𝟐

𝝈𝝈𝒋𝒋𝟐𝟐
� �
𝝀𝝀𝟏𝟏𝝀𝝀𝟐𝟐
𝒍𝒍𝝀𝝀𝟑𝟑

�
𝟐𝟐

 (20) 

where 𝜎𝜎𝑖𝑖2 and 𝜎𝜎𝑗𝑗2 denotes the OLS residual variance of the autoregressive models estimated for variables 𝑖𝑖 and 

𝑗𝑗, and 𝜆𝜆2 represents a cross-variable specific variance parameter. 

For exogenous variables (including constant terms), the variance is given by: 

 𝝈𝝈𝒄𝒄𝒊𝒊
𝟐𝟐 = 𝝈𝝈𝒊𝒊𝟐𝟐(𝝀𝝀𝟏𝟏𝝀𝝀𝟒𝟒)𝟐𝟐 (21) 

where 𝜆𝜆4 is a large variance parameter. In this study, typical values found in the literature for parameters 𝜆𝜆1, 
𝜆𝜆2, 𝜆𝜆3 and 𝜆𝜆4 are used, i.e. 𝜆𝜆1 = 0.1, 𝜆𝜆2 = 0.5, 𝜆𝜆3 = 1 and 𝜆𝜆4 =  102. 
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Empirical BVAR model estimation follows the same strategy as VAR model estimation. Thus, we take the same 
seven model specifications and estimate them taking the number of lags from one to four. Overall, 84 
different BVAR models were estimated and included in the suite of models. 

BVAR WITH STOCHASTIC VOLATILITY 

Several authors noted (e.g. Kouwenberg & Zwinkels, 2014) that allowing time-variation in parameters may 
improve house price forecasting performance. Furthermore, Chan & Eisenstat (2018) analysed US 
macroeconomic data and found strong support for the time-varying parameter VAR with stochastic volatility 
(TVP-VAR-SV) compared to a constant coefficient VAR with homoscedastic innovations. However, the authors 
argue that most of the gains come from allowing for stochastic volatility rather than time variation in the VAR 
coefficients. Following these results in our analysis, we apply the BVAR model with stochastic volatility (BVAR-
SV) which was initially proposed by Cogley & Sargent (2005) and Primiceri (2005). Thus, we allow for 
stochastic volatility but BVAR coefficients are left constant. 

In a traditional VAR model it is assumed that the residuals are distributed according to multivariate normal 
distribution, i.e. 𝑢𝑢𝑡𝑡 ~ 𝒩𝒩(0,Σ). Meanwhile, in the BVAR-SV model, it is assumed that the residuals are 
independently but not identically distributed across time. Their variance-covariance matrix Σ is allowed to be 
time varying, hence providing stochastic volatility and introducing heteroscedasticity.  

It is assumed that Σ𝑡𝑡 can be decomposed into: 

 𝚺𝚺𝒕𝒕 = 𝑭𝑭−𝟏𝟏𝚲𝚲𝒕𝒕𝑭𝑭−𝟏𝟏′ (22) 

where 𝐹𝐹−1 is a lower triangular matrix with ones on the diagonal and non-zero coefficients below the diagonal. 
Meanwhile, Λ𝑡𝑡 is a period-specific diagonal matrix of variances, i.e. 
diag(Λ𝑡𝑡) = (𝑠̅𝑠1 exp�𝜆𝜆1,𝑡𝑡� , 𝑠̅𝑠2 exp�𝜆𝜆2,𝑡𝑡� , … , 𝑠̅𝑠𝑛𝑛 exp�𝜆𝜆𝑛𝑛,𝑡𝑡�). 𝑠̅𝑠1, 𝑠̅𝑠2, … , 𝑠̅𝑠𝑛𝑛 are known scaling terms and 𝜆𝜆1,𝑡𝑡, 𝜆𝜆2,𝑡𝑡, …, 𝜆𝜆𝑛𝑛,𝑡𝑡 

are dynamic processes generating the heteroscedasticity of the model. It is assumed that they are 
characterised by the autoregressive process: 

 𝝀𝝀𝒊𝒊,𝒕𝒕 =  𝜸𝜸𝒊𝒊𝝀𝝀𝒊𝒊,𝒕𝒕−𝟏𝟏 + 𝜺𝜺𝒊𝒊,𝒕𝒕, 𝜺𝜺𝒊𝒊,𝒕𝒕 ~ 𝓝𝓝(𝟎𝟎,𝝋𝝋𝒊𝒊)  (23) 

The parameters of interest to be estimated are: the VAR coefficients 𝛽𝛽, the elements 𝑓𝑓−1 =  �𝑓𝑓𝑖𝑖−1: 𝑖𝑖 = 2, … ,𝑛𝑛� 

related to the 𝐹𝐹−1 matrix, the set of dynamic coefficients 𝜆𝜆 =  �𝜆𝜆𝑖𝑖,𝑡𝑡: 𝑖𝑖 = 1, … ,𝑛𝑛; 𝑡𝑡 = 1, … ,𝑇𝑇�, the set of 
autoregressive coefficients 𝛾𝛾 =  {𝛾𝛾𝑖𝑖: 𝑖𝑖 = 1, … ,𝑛𝑛} and the heteroscedasticity parameters 𝜑𝜑 =  {𝜑𝜑𝑖𝑖: 𝑖𝑖 = 1, … ,𝑛𝑛}. 

Once again, the empirical BVAR-SV model estimation follows the same strategy as VAR model estimation. 
Thus, we take the same seven model specifications and estimate them taking the number of lags from one to 
four. Overall, 84 different BVAR-SV models were estimated and included in the suite of models. 

7.2. ESTIMATION OF FORECAST ACCURACY 

In the forecasting exercise, we used the house price index and other Lithuanian data spanning from Q1 2002 
to Q2 2018 (T = 66). To compute out-of-sample forecasts, the data sample was split into an in-sample period 
(I = 40) and an out-of-sample period (O = 26). With a forecast horizon of ten quarters, this allowed 
evaluating 17 forecasts (N = 17). At the start, all models were estimated using data until Q4 2011 and up to 
ten quarters ahead forecasts of log level of the house price index were made. All models were then re-
estimated by expanding the training data set by one quarter to produce a new set of forecasts. The expanding 
window estimation was repeated until Q4 2015, which was the final estimation period. 

The forecasting performance was assessed using several standard forecast evaluation measures. The main 
measure of forecasting accuracy in this exercise was the root mean squared error (RMSE) of forecasts at 
particular period ahead, which is defined as: 

 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  �𝟏𝟏
𝑵𝑵
∑ (𝒚𝒚𝒏𝒏,𝒉𝒉 − 𝒇𝒇𝒏𝒏,𝒉𝒉)𝟐𝟐𝑵𝑵
𝒏𝒏=𝟏𝟏   (24) 
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where 𝑓𝑓𝑛𝑛,ℎ is the h-step ahead forecast, 𝑦𝑦𝑛𝑛,ℎ is the actual value at that step, and 𝑁𝑁 is the number of forecasts. 
The forecast accuracy was compared at one-, four-, eight- and ten-quarter-ahead RMSEs across all models. In 
general, the lower RMSE indicates the better forecasting accuracy of the model.  

Another measure for forecasting accuracy is the mean absolute forecast error (MAE) which is defined as: 

 𝑴𝑴𝑴𝑴𝑴𝑴 =  
𝟏𝟏
𝑵𝑵� |𝒚𝒚𝒏𝒏,𝒉𝒉 − 𝒇𝒇𝒏𝒏,𝒉𝒉|

𝑵𝑵

𝒏𝒏=𝟏𝟏

 (25) 

In this exercise we calculate the relative absolute error (RMAE): 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀 / 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁ï𝑣𝑣𝑣𝑣, where 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁ï𝑣𝑣𝑣𝑣  =

 1
𝑁𝑁
∑ |𝑦𝑦𝑛𝑛,ℎ − 𝑓𝑓𝑛𝑛,ℎ

𝑁𝑁𝑁𝑁ï𝑣𝑣𝑣𝑣|𝑁𝑁
𝑛𝑛=1  is the MAE of the our benchmark naïve forecast. RMAE smaller than one indicates a better 

forecasting performance compared to a simple naïve forecast. 

The forecasting accuracy was calculated for the log level of the house price index. If the model used quarterly 
growth rates or annual growth rates of the house price index then forecasts of those models were recalculated 
to the log level of the index and only then forecasting accuracy was evaluated. 

7.3. FORECASTING PERFORMANCE 

Estimated forecasting accuracy is presented in Appendix C, where tables report RMSE of the individual models 
at different forecasting horizons. Results in the tables also indicate which models had RMAE lower than one, 
i.e. which models performed better than a benchmark naïve forecast. Several observations can be made from 
this forecasting exercise. 

First of all, model accuracy depends on the forecasting horizon. If we consider one-quarter-ahead forecasts, 
only a few BVAR and BVAR-SV models estimated in log levels outperformed a simple naïve forecast. In longer 
forecasting horizons, many more models were able to give better accuracy. 

The results also show that univariate models, in general, give better results than VAR models. Especially 
models estimated in quarterly growth rates, which constitute one of the best model classes in this exercise. 
Only some of the BVAR and BVAR-SV models outperformed univariate models. Thus, additional variables may 
improve forecasting performance, but we need Bayesian estimation to exploit that gain. 

Relatively short time series may be one of the reasons why VAR models (especially with a higher number of 
lags) provided poorer forecasting accuracy. A large number of parameters that need to be estimated caused 
large out-of-sample forecasting errors. Our results are in line with Karlsson (2013), who showed that BVAR 
models usually show better forecasting accuracy compared to VAR models. Furthermore, the results show that 
allowing stochastic volatility enhances forecasting performance of the models estimated in log levels. But it 
seems that there are no gains if we model house price index by taking the quarterly or annual growth rate. 

If we consider different multivariate model specifications, then specifications 2 and 6 estimated in log levels 
provided better forecasting accuracy than other specifications. Thus, it seems that the unemployment rate did 
not provide additional information. The results also show that multivariate models with one lag outperform 
models with a higher number of lags. It seems that additional lags are associated with additional parameters 
to be estimated and this leads to larger out-of-sample forecasting errors. 

Fig. 9 shows forecasts of the individual models that performed best (in terms of RMSE) in different model 
classes. In the univariate case, the best performing model was ARMA(4,1) estimated on quarterly growth 
rates. The lowest RMSEs between VAR-type models were achieved by VAR(1) Spec. 2 (taking log levels), 
BVAR(1) Spec. 6 (taking annual growth rates) and BVAR-SV(1) Spec. 7 (taking log levels). Thus, we see that 
depending on the model class, different data transformation or multivariate model specification would be 
preferred for the purposes of forecasting the house price index. Also, moving further ahead in the forecasting 
horizon, the dispersion between models’ forecasts increases. One-quarter-ahead forecasts are close, but a 
range of forecasts at eight quarters ahead is wide. Furthermore, some models, for example, ARMA(4,1) or 
VAR(1) Spec. 2, showed significant adjustments in their forecasts as new data are taken into account.      
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Fig. 9. Forecasts of individual models at different forecasting horizons 
 

  

  

To summarise, BVAR-SV(1) Spec. 7, estimated taking data in log levels, provided the best forecasting 
accuracy across all estimated models. However, we recognise that the results are driven by the current data 
sample, which is relatively short and volatile. Thus, the results may change as we will have more data in our 
analysis. 

7.4. FORECAST COMBINATION 

Even though BVAR-SV(1) Spec. 7 showed the best out-of-sample forecasting accuracy in our analysis, the 
data generating process is unknown and model uncertainty risk is still an issue. Furthermore, if we consider 
many forecasting models, it is unclear which forecast to focus on. Those issues can be addressed by 
combining the forecasts. Various forecast combination methods have gained ground in the forecasting 
literature because it is found that in empirical exercises these methods usually outperform forecasts from a 
single model. A detailed discussion on forecast combinations can be found in Timmermann (2006). The author 
distinguishes several reasons why forecast combination may be useful. First, forecast combination may be 
more robust to unknown instabilities (e.g. structural breaks) than an individual model. Second, individual 
models may be subject to misspecification bias and these biases may be averaged out in the combination 
forecast. 

In our exercise we consider four combination approaches to produce point forecasts at each horizon. The first 
two approaches are a simple mean and median of the individual forecasts at each forecasting horizon. 
Timmermann (2006) argues that simple combination methods are hard to beat. The third combination 
approach is based on individual eight quarters ahead forecasting accuracy (in terms of RMSE) of the model:    

80
85
90
95

100
105
110
115
120
125
130

Q1 2010 Q1 2012 Q1 2014 Q1 2016 Q1 2018

One-quarter-ahead 
Actual

Naïve

ARMA(4,1)

VAR(1)
Spec. 2
BVAR(1)
Spec. 6
BVAR-SV(1)
Spec. 7

Index, 2015 = 100 

Sources: Statistics Lithuania, authors' calculations 

80
85
90
95

100
105
110
115
120
125
130

Q1 2010 Q1 2012 Q1 2014 Q1 2016 Q1 2018

Four-quarters-ahead Index, 2015 = 100 

Sources: Statistics Lithuania, authors' calculations 

80
85
90
95

100
105
110
115
120
125
130

Q1 2010 Q1 2012 Q1 2014 Q1 2016 Q1 2018

Eight-quarters-ahead Index, 2015 = 100 

Sources: Statistics Lithuania, authors' calculations 

80
85
90
95

100
105
110
115
120
125
130

Q1 2010 Q1 2012 Q1 2014 Q1 2016 Q1 2018

Ten-quarters-ahead Index, 2015 = 100 

Sources: Statistics Lithuania, authors' calculations 



 

 
25  

 𝒘𝒘𝒊𝒊 =  
(𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊)

∑ (𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊)𝑴𝑴
𝒊𝒊=𝟏𝟏

 (26) 

where 𝑤𝑤𝑖𝑖 is the weights of the individual model, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 is the forecast accuracy at eight quarters ahead 
forecasting horizon, and 𝑀𝑀 is the number of models. Thus, the model with the lowest forecast error receives 
the highest weight. The fourth approach is similar to the third, but we take only those models in which RMAE 
is smaller than one at eight quarters ahead forecasting horizon. Thus, we combine only those models, which 
were better than the benchmark forecast. 

Table 2. Forecasting accuracy of the forecast combination approaches 

Combination approach H1 H4 H8 H10 

Mean 0.020 0.035 0.045 0.043 

Median 0.019 0.033 0.047 0.046 

Weighted mean (RMSE) 0.020 0.034 0.044 0.042 

Weighted mean (RMSE, where RMAE < 1) 0.019 0.033 0.042 0.038 

Notes: the table provides RMSE at a different forecasting horizon. The bold numbers show models where RMAE < 1. 

Table 2 shows the forecasting accuracy of the different forecast combination approaches. The results indicate 
that even simple combination methods increased forecasting accuracy considerably. Applying weights based 
on RMSEs further enhances forecasting power. Only three BVAR-SV type models showed a bit better 
forecasting performance than the first three forecast combination approaches. And only one model, i.e. BVAR-
SV(1) Spec. 7, showed better forecasting accuracy than the fourth combination approach. Nevertheless, the 
forecast combination helps to address model uncertainty issue and is still reasonably accurate over various 
forecasting horizons. 

 

CONCLUDING REMARKS 

In this paper, we addressed three important questions related to Lithuanian house prices, namely, whether 
house prices are under or over valuated, which explanatory variables have the biggest impact on the growth 
of house prices and what the future development of the Lithuanian house price index could be. Three separate 
modelling and forecasting exercises were performed in order to try answering these questions. 

The results of the VECM model show that house prices are negatively associated with real lending rates and 
have a strong positive association with construction costs and credit flows (in excess of housing investment). 
House prices also exhibit very strong inertia and the pull towards the long-term equilibrium is weak and 
statistically insignificant. The model helps identify a pronounced boom-bust cycle of house prices and shows 
that house prices were still slightly below their econometric balanced path at the end of the analysed sample, 
in 2018. 

We employed an ARDL model to assess which explanatory variables had the biggest impact on house price 
growth. The results revealed that interest rates on new loans to households and building permits are among 
the key drivers behind house price dynamics in Lithuania. The unexplained error may show that the actual 
decrease in growth could be attributed to changes in perception of the house value or that the relationship 
between variables is more contemporaneous. In both cases, the current modelling setup does not allow us to 
address these issues. The short term out-of-sample forecasting showed that we need a longer time series to 
make more accurate predictions with this type of model. 

Furthermore, a suite of models was built to make short and medium term forecasts of the Lithuanian house 
price index. We employed various univariate and multivariate time series forecasting models and compared 
their forecasting accuracy. The results show that the multivariate models outperformed univariate models, but 
we need Bayesian estimation to exploit the gain of the additional variables. Relatively short time series may 
be one of the reasons why the traditional VAR models provided relatively poor forecasting accuracy. To 
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safeguard against model uncertainty we considered several forecast combination approaches that showed 
improved forecasting accuracy compared to individual models. Thus, the combination of forecasts will be used 
to predict future changes in the Lithuanian housing price index. 

Analysis presented in this paper may be viewed as a further step towards more formalised modelling and 
forecasting of the Lithuanian house price index at the Bank of Lithuania. Each of the empirical exercises could 
be improved in various directions. However, we are analysing relatively short and volatile data and, therefore, 
as more observations become available, a longer data sample will help to model and forecast the Lithuanian 
house price index more accurately.   
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APPENDIX A 

  

Table A1. Cointegrating relationship estimation results 

Dependent variable: hpi 

Variable Coefficients Standard errors 

Intercept ‒2.054* 0.399 

r ‒1.084* 0.376 

ccpi 1.543* 0.083 

credInv 0.205* 0.020 

debtRatio 0.231* 0.029 

Notes: * significant at the 0.05 level. 
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APPENDIX B 

Fig. B1. Out-of-sample forecasts of weighted ARDL model at different forecasting horizons 
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APPENDIX C 

 

Table C1. Forecasting accuracy of the naïve forecasts and univariate ARMA models 

Model 
log level q-o-q growth y-o-y growth 

h1 h4 h8 h10 h1 h4 h8 h10 h1 h4 h8 h10 
Naïve 0.018 0.047 0.101 0.132 0.025 0.080 0.156 0.191 0.024 0.042 0.077 0.090 
  
AR(1) 0.020 0.054 0.130 0.173 0.020 0.042 0.065 0.071 0.041 0.053 0.113 0.153 
AR(2) 0.022 0.070 0.174 0.232 0.020 0.041 0.062 0.067 0.040 0.046 0.092 0.125 
AR(3) 0.022 0.075 0.195 0.261 0.020 0.039 0.061 0.065 0.038 0.042 0.082 0.113 
AR(4) 0.022 0.075 0.194 0.261 0.020 0.039 0.061 0.064 0.032 0.043 0.085 0.117 
  
ARMA(1,1) 0.021 0.060 0.146 0.195 0.020 0.039 0.059 0.061 0.040 0.049 0.100 0.134 
ARMA(2,1) 0.022 0.074 0.192 0.259 0.020 0.040 0.061 0.065 0.037 0.044 0.092 0.129 
ARMA(3,1) 0.023 0.074 0.189 0.254 0.020 0.040 0.062 0.066 0.036 0.042 0.085 0.119 
ARMA(4,1) 0.022 0.075 0.191 0.255 0.020 0.039 0.057 0.060 0.031 0.041 0.078 0.109 
  
ARMA(1,2) 0.022 0.064 0.157 0.209 0.020 0.040 0.062 0.067 0.033 0.048 0.099 0.129 
ARMA(2,2) 0.023 0.071 0.177 0.236 0.020 0.040 0.063 0.067 0.029 0.044 0.081 0.096 
ARMA(3,2)* - - - - 0.020 0.040 0.060 0.063 0.031 0.046 0.089 0.104 
ARMA(4,2) 0.022 0.077 0.202 0.269 0.028 0.043 0.064 0.065 0.049 0.047 0.089 0.140 

Notes: the table provides RMSE at different forecasting horizon. The bolded numbers show models where RMAE < 1. 
* Stationary model was not found for ARMA(3,2) specification. 
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Table C2. Forecasting accuracy of the VAR models 

Model 
log level q-o-q growth y-o-y growth 

h1 h4 h8 h10 h1 h4 h8 h10 h1 h4 h8 h10 
Specification 1 
VAR(1) 0.038 0.104 0.119 0.105 0.021 0.051 0.080 0.093 0.026 0.057 0.117 0.155 
VAR(2) 0.031 0.115 0.168 0.163 0.021 0.062 0.117 0.144 0.033 0.077 0.190 0.264 
VAR(3) 0.021 0.071 0.156 0.176 0.022 0.065 0.147 0.190 0.037 0.094 0.211 0.278 
VAR(4) 0.022 0.049 0.085 0.100 0.027 0.062 0.138 0.185 0.039 0.106 0.232 0.300 
Specification 2 
VAR(1) 0.020 0.041 0.049 0.049 0.029 0.065 0.093 0.104 0.027 0.055 0.099 0.122 
VAR(2) 0.028 0.058 0.071 0.072 0.025 0.055 0.090 0.103 0.046 0.093 0.164 0.223 
VAR(3) 0.028 0.046 0.059 0.060 0.042 0.079 0.148 0.189 0.044 0.098 0.133 0.152 
VAR(4) 0.039 0.062 0.085 0.077 0.043 0.080 0.143 0.168 0.062 0.131 0.190 0.241 
Specification 3 
VAR(1) 0.021 0.042 0.050 0.057 0.024 0.068 0.117 0.131 0.050 0.103 0.188 0.246 
VAR(2) 0.031 0.057 0.099 0.121 0.031 0.074 0.129 0.142 0.057 0.095 0.160 0.205 
VAR(3) 0.035 0.059 0.083 0.079 0.037 0.098 0.172 0.191 0.062 0.136 0.197 0.223 
VAR(4) 0.044 0.104 0.163 0.173 0.043 0.119 0.286 0.391 0.068 0.136 0.290 0.298 
Specification 4 
VAR(1) 0.038 0.119 0.179 0.184 0.021 0.052 0.084 0.094 0.031 0.054 0.080 0.094 
VAR(2) 0.031 0.102 0.177 0.192 0.020 0.047 0.078 0.084 0.039 0.060 0.109 0.132 
VAR(3) 0.025 0.066 0.162 0.191 0.026 0.055 0.090 0.090 0.048 0.088 0.156 0.199 
VAR(4) 0.043 0.089 0.184 0.190 0.028 0.059 0.113 0.132 0.061 0.119 0.208 0.250 
Specification 5 
VAR(1) 0.036 0.117 0.182 0.189 0.024 0.071 0.128 0.143 0.037 0.072 0.118 0.145 
VAR(2) 0.030 0.094 0.142 0.133 0.024 0.071 0.120 0.129 0.047 0.082 0.147 0.181 
VAR(3) 0.029 0.063 0.114 0.139 0.029 0.074 0.138 0.170 0.060 0.099 0.170 0.206 
VAR(4) 0.052 0.125 0.234 0.261 0.031 0.074 0.161 0.219 0.060 0.237 0.506 0.577 
Specification 6 
VAR(1) 0.021 0.043 0.049 0.047 0.024 0.052 0.079 0.090 0.030 0.055 0.087 0.100 
VAR(2) 0.027 0.059 0.069 0.066 0.023 0.045 0.066 0.066 0.035 0.078 0.154 0.216 
VAR(3) 0.029 0.050 0.068 0.065 0.032 0.060 0.119 0.153 0.056 0.125 0.240 0.307 
VAR(4) 0.038 0.060 0.085 0.074 0.033 0.072 0.127 0.136 0.060 0.147 0.301 0.390 
Specification 7 
VAR(1) 0.021 0.042 0.061 0.074 0.023 0.060 0.104 0.119 0.039 0.078 0.130 0.159 
VAR(2) 0.026 0.067 0.192 0.245 0.029 0.070 0.116 0.126 0.052 0.089 0.169 0.240 
VAR(3) 0.032 0.070 0.165 0.188 0.036 0.088 0.155 0.175 0.072 0.119 0.192 0.233 
VAR(4) 0.045 0.181 0.406 0.481 0.046 0.151 0.386 0.525 0.088 0.134 0.252 0.236 

Notes: the table provides RMSE at different forecasting horizon. The bolded numbers show models where RMAE < 1. 
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Table C3. Forecasting accuracy of the BVAR models 

Model 
log level q-o-q growth y-o-y growth 

h1 h4 h8 h10 h1 h4 h8 h10 h1 h4 h8 h10 
Specification 1 
BVAR(1) 0.024 0.052 0.051 0.045 0.021 0.046 0.074 0.090 0.023 0.045 0.091 0.114 
BVAR(2) 0.025 0.057 0.058 0.050 0.021 0.043 0.056 0.059 0.025 0.053 0.118 0.153 
BVAR(3) 0.025 0.062 0.077 0.070 0.021 0.047 0.081 0.101 0.024 0.055 0.120 0.161 
BVAR(4) 0.021 0.041 0.054 0.055 0.021 0.048 0.087 0.111 0.024 0.050 0.106 0.142 
Specification 2 
BVAR(1) 0.018 0.041 0.085 0.111 0.021 0.044 0.067 0.079 0.022 0.037 0.057 0.063 
BVAR(2) 0.018 0.040 0.082 0.107 0.021 0.043 0.057 0.060 0.022 0.039 0.069 0.081 
BVAR(3) 0.018 0.039 0.079 0.103 0.021 0.051 0.101 0.129 0.022 0.039 0.065 0.077 
BVAR(4) 0.019 0.038 0.074 0.096 0.021 0.046 0.085 0.109 0.023 0.040 0.061 0.072 
Specification 3 
BVAR(1) 0.017 0.039 0.081 0.108 0.021 0.052 0.087 0.103 0.023 0.038 0.053 0.063 
BVAR(2) 0.018 0.042 0.092 0.125 0.021 0.044 0.062 0.066 0.023 0.040 0.064 0.075 
BVAR(3) 0.018 0.039 0.090 0.118 0.021 0.050 0.099 0.126 0.027 0.051 0.084 0.098 
BVAR(4) 0.019 0.046 0.104 0.136 0.021 0.047 0.078 0.096 0.028 0.071 0.139 0.164 
Specification 4 
BVAR(1) 0.019 0.034 0.063 0.088 0.021 0.046 0.072 0.081 0.022 0.038 0.057 0.064 
BVAR(2) 0.019 0.036 0.060 0.081 0.021 0.043 0.057 0.059 0.023 0.043 0.077 0.093 
BVAR(3) 0.020 0.042 0.082 0.109 0.021 0.052 0.108 0.142 0.023 0.044 0.075 0.091 
BVAR(4) 0.019 0.037 0.076 0.103 0.021 0.050 0.101 0.136 0.023 0.040 0.065 0.078 
Specification 5 
BVAR(1) 0.018 0.028 0.056 0.080 0.021 0.051 0.087 0.102 0.024 0.040 0.064 0.081 
BVAR(2) 0.018 0.032 0.061 0.086 0.021 0.044 0.062 0.065 0.024 0.044 0.076 0.091 
BVAR(3) 0.019 0.035 0.075 0.102 0.021 0.048 0.097 0.125 0.027 0.052 0.088 0.103 
BVAR(4) 0.020 0.046 0.111 0.150 0.021 0.048 0.081 0.100 0.027 0.058 0.106 0.126 
Specification 6 
BVAR(1) 0.019 0.048 0.098 0.127 0.021 0.045 0.070 0.083 0.023 0.036 0.054 0.057 
BVAR(2) 0.019 0.047 0.096 0.124 0.021 0.042 0.056 0.058 0.022 0.039 0.066 0.077 
BVAR(3) 0.019 0.045 0.093 0.118 0.021 0.047 0.088 0.111 0.022 0.038 0.065 0.075 
BVAR(4) 0.019 0.041 0.080 0.102 0.021 0.044 0.076 0.096 0.023 0.038 0.057 0.067 
Specification 7 
BVAR(1) 0.019 0.047 0.098 0.127 0.021 0.051 0.086 0.101 0.023 0.038 0.054 0.061 
BVAR(2) 0.019 0.048 0.105 0.139 0.021 0.044 0.060 0.064 0.023 0.041 0.066 0.076 
BVAR(3) 0.018 0.046 0.109 0.142 0.021 0.049 0.094 0.117 0.026 0.047 0.074 0.083 
BVAR(4) 0.019 0.047 0.111 0.145 0.021 0.047 0.079 0.098 0.026 0.047 0.078 0.089 

Notes: the table provides RMSE at different forecasting horizon. The bolded numbers show models where RMAE < 1. 
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Table C4. Forecasting accuracy of the BVAR-SV models 

Model 
log level q-o-q growth y-o-y growth 

h1 h4 h8 h10 h1 h4 h8 h10 h1 h4 h8 h10 
Specification 1 
BVAR-SV(1) 0.030 0.083 0.120 0.129 0.020 0.051 0.101 0.131 0.022 0.036 0.062 0.069 
BVAR-SV(2) 0.027 0.079 0.116 0.125 0.021 0.044 0.086 0.112 0.021 0.040 0.084 0.107 
BVAR-SV(3) 0.025 0.068 0.107 0.117 0.020 0.033 0.054 0.061 0.023 0.037 0.073 0.093 
BVAR-SV(4) 0.021 0.046 0.074 0.086 0.021 0.034 0.051 0.056 0.023 0.036 0.067 0.085 
Specification 2 
BVAR-SV(1) 0.017 0.033 0.065 0.080 0.019 0.039 0.081 0.108 0.023 0.042 0.071 0.084 
BVAR-SV(2) 0.018 0.035 0.067 0.084 0.019 0.036 0.064 0.081 0.025 0.053 0.104 0.133 
BVAR-SV(3) 0.019 0.036 0.073 0.093 0.019 0.035 0.054 0.063 0.026 0.056 0.114 0.151 
BVAR-SV(4) 0.019 0.034 0.066 0.084 0.020 0.037 0.050 0.054 0.026 0.054 0.098 0.123 
Specification 3 
BVAR-SV(1) 0.019 0.034 0.041 0.041 0.020 0.055 0.112 0.141 0.027 0.046 0.072 0.088 
BVAR-SV(2) 0.021 0.044 0.054 0.051 0.020 0.054 0.105 0.132 0.028 0.048 0.082 0.107 
BVAR-SV(3) 0.021 0.044 0.055 0.051 0.020 0.039 0.061 0.066 0.030 0.055 0.097 0.123 
BVAR-SV(4) 0.021 0.044 0.056 0.054 0.021 0.042 0.063 0.069 0.036 0.069 0.117 0.152 
Specification 4 
BVAR-SV(1) 0.021 0.044 0.060 0.066 0.021 0.042 0.069 0.086 0.023 0.041 0.073 0.089 
BVAR-SV(2) 0.020 0.047 0.058 0.063 0.020 0.039 0.056 0.057 0.023 0.046 0.094 0.120 
BVAR-SV(3) 0.021 0.047 0.059 0.065 0.021 0.049 0.100 0.126 0.023 0.048 0.096 0.121 
BVAR-SV(4) 0.021 0.041 0.048 0.054 0.021 0.046 0.087 0.110 0.025 0.048 0.087 0.108 
Specification 5 
BVAR-SV(1) 0.020 0.037 0.048 0.056 0.022 0.053 0.091 0.107 0.028 0.051 0.093 0.118 
BVAR-SV(2) 0.019 0.039 0.045 0.048 0.021 0.044 0.067 0.069 0.026 0.048 0.091 0.116 
BVAR-SV(3) 0.021 0.040 0.043 0.044 0.021 0.043 0.083 0.099 0.028 0.051 0.094 0.114 
BVAR-SV(4) 0.021 0.039 0.039 0.041 0.021 0.047 0.079 0.092 0.033 0.055 0.090 0.108 
Specification 6 
BVAR-SV(1) 0.018 0.030 0.056 0.068 0.022 0.066 0.148 0.196 0.025 0.039 0.060 0.068 
BVAR-SV(2) 0.018 0.031 0.050 0.059 0.021 0.061 0.146 0.196 0.027 0.053 0.092 0.112 
BVAR-SV(3) 0.021 0.032 0.056 0.068 0.019 0.031 0.049 0.056 0.027 0.052 0.092 0.112 
BVAR-SV(4) 0.021 0.032 0.050 0.060 0.021 0.036 0.049 0.052 0.035 0.068 0.113 0.144 
Specification 7 
BVAR-SV(1) 0.018 0.029 0.030 0.030 0.023 0.079 0.172 0.222 0.031 0.055 0.100 0.134 
BVAR-SV(2) 0.022 0.045 0.045 0.037 0.023 0.072 0.155 0.201 0.033 0.060 0.106 0.132 
BVAR-SV(3) 0.027 0.061 0.063 0.053 0.020 0.036 0.061 0.070 0.036 0.067 0.117 0.146 
BVAR-SV(4) 0.028 0.065 0.071 0.065 0.023 0.049 0.074 0.079 0.044 0.075 0.119 0.144 

Notes: the table provides RMSE at different forecasting horizon. The bolded numbers show models where RMAE < 1. 
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Figure C1. Forecasts of forecast combinations at different forecasting horizons 
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