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Abstract  

This paper provides a method of Markovian analysis of security prices. In the study we 

examine four securities selected from the finance and banking segment of the Nigerian 

bourse for a time frame ranging from January 4
th

 2005, to December 4
th

 2008. In our 

analysis we define three possible states of nature (rise, drop, stable) with regards to security 

price change process within a modeled Markovian Framework. Our definition of the possible 

set of states allows both the magnitude and the direction of change to be incorporated into 

the analysis. The findings reveal that the Markov Chains did not provide a reliable prediction 

of security price movements for the period of our analysis. It is therefore recommended that 

we can only adopt the position that at best Markov Chains (for now) only helps to enrich our 

understanding of stock price behaviour, as far as the random walk hypothesis is concerned, 

even if the ultimate goal of prediction still proves difficult and elusive.  

 

Keywords: Markov Chains, Markov Processes, Random Walk, Stock Price Transition 

 

1.0 INTRODUCTION 

The prediction of stock price behaviour has 

been a major challenge to stakeholders in 

the literature. Many attempts have been 

made to predict stock price behaviour in the 

past. Analysts have used fundamental and 

technical approaches and more tools are 

being evolved in the literature to deal with 
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this aspect of the stock market. All the 

attempts are to see if an investor can beat 

the market and reap a windfall. The success 

of such analytical tools could lead to an 

upward trend in the stock market and further 

lead to market vibrancy and economic 

growth and development. Some of these 

analytical tools have had some successes in 

terms of long-term prediction of stock price 

behaviour. For example, the Markov Chain 

approach has attracted latter day analysts 

and has been adjudged a possible tool of the 

future in both developed and developing 

economies. The use of Markov Chains has 

received a new impetus, due to an 

increasing attempt by researchers to develop 

new tools for predicting stock price 

behavior, and is at the front burners of stock 

price analysis in the literature.  

 

Markov theory could be of importance in 

the analysis of security prices in two ways: 

firstly, it can be utilised as an important 

means for making probabilistic assumptions 

about the direction of future equity price 

movements or returns levels; and secondly it 

can provide a more robust mathematical 

extension and analysis of the random walk 

hypothesis. It therefore could serve as an 

alternative to the much popular regression 

forecasting models utilised in much of the 

extant literature, and other techniques 

utilized by technical analysts, in the analysis 

of stock price behaviour. Ryan (1973) posits 

that Markov theory deals with the 

movement of a probabilistic system from its 

prior state to another. In instances 

concerning a mathematical sequence of 

observations on security returns or prices, 

the states of the Markovian system could 

readily be regarded as the set of all sequence 

of observations on stock prices and returns. 

Theoretically, the observed states being 

studied can be regarded as one consisting of 

the set of all possible equity returns or 

prices for a particular security. The possible 

states so defined in the system is usually 

regarded to be infinite, thereby making it 

convenient in the extant literature to group 

security returns or prices into ranges, or 

particular classes for easy analysis. 

Whenever equity prices or returns are 

referred to as portraying a Markovian 

process, it simply suggests that certain 

theorems relating to the theory of 

Markovian processes can possibly be 

utilised to enable us resolve pertinent 

questions bordering on the future the 

possible future price levels of given 

securities (Ryan, 1973).  

 

For the current analysis, the Markovian 

model we studied is a first – order chain. In 

particular, the chain consists of a finite 

number of states and a finite number of 

points for which our observations were 

made. For the current study, it is shown that 

under a fairly general and partial-adjustment 

Markov Chain model of stock price 

determination, any price movements that do 

not particularly display the random walk 

characteristic may be readily interpreted as 

purely conforming to a Markov process. 

This is in line with similar studies like 

Anderson and Goodman (1957), 

Chakravarti, Laha and Roy (1967); 

Bhargava, (1962), Fielitz and Bhargava 

(1973), Eriki and Idolor (2009) and Idolor 

and Braimah (2015).  

 

Against this background, the purpose of this 

study is to attempt an exploratory analysis 

of some possible means in which Markov 

processes can be readily utilised in security 

price and returns movements analysis in the 

capital market. The study posits that 

successive price or returns movements of 

securities may readily be hypothesized as 

portraying Markovian tendencies that could 

provide valuable insight or information to 

local and international financial asset 

managers. Dryden (1969) and Ryan (1973) 

conducted investigations, in which 

aggregate and individual stock data on 

United Kingdom share prices was analysed 

within a Markovian framework, and which 

indicated that it might be fruitful to apply 

the Markov model to more disaggregated 

data, specifically to individual stock price 

data. 
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2.  LITERATURE REVIEW AND 

HYPOTHESIS DEVELOPMENT 

In analysing Markov models; the occurrence 

of future states of existence of the system in 

the Markovian model, is often 

mathematically depicted as being dependent 

on the immediately preceding state of the 

system, and, only on it (Taha, 2001). If t0<t1 

<… tn (n=0, 1, 2,…), it mathematically 

represents successive points in time. 

Therefore, the family of random variables 

{tn} is regarded as a Markov process if it 

clearly possesses the following Markovian 

property: 

P {tn = Xn|{tn-1 = Xn-1,…., {t0 = X0} = 

P {tn = Xn|{tn-1 = Xn-1} 

This holds for all possible values of t0, 

t1,…, tn.   (1) 
 

The probability Pxn-1, Xn = P {tn = Xn|tn-1 

= Xn-1} can be referred to as the transition 

probability of the system; it represents all 

the conditional probabilities of the Markov 

system being or remaining in Xn at tn;  

provided it was initially in Xn-1 at tn-1 (X 

indicates the states of the system while t is 

the period or time of its occurrence). This 

mathematical representation can typically 

also be referred to as one-step transition 

basically because it describes the Markov 

transition from tn-1 to tn; while m-step 

transition probabilities of the system can be 

mathematically portrayed as shown in 

equation 2.  

Pxn, Xn+m =  P {tn+m = Xn+m |tn = Xn}   (2) 

 

Markov Chains 
Markov chains typically referred to as 

Markovian models are a unique class of 

mathematical techniques applicable to 

quantitatively inclined decision problems. 

Markov chain derives its Name from a 

Russian Mathematician who is credited with 

the development of the method. Markov 

chains could serve as veritable tools in 

examining frequency with which customers 

continue to patronise certain brands of 

product or alternately the frequency of 

switching to others. In the extent literature, 

it is generally assumed that people do not 

arbitrarily shift the brands they purchase 

randomly, but rather purchase brands in the 

future which reflects preferences, in the not 

too distant past. Other areas of applications 

of Markovian models are in relation to 

manpower planning models, security 

behaviour modeling, and, bad debts 

determination models and credit 

management models (Agbadudu, 1996). 

Markovian models are basically regarded in 

this light as a sequence of states of a 

probabilistic system that displays 

Markovian properties. For every given time 

of analysis, the probabilistic system could 

change from the prior state it was in before 

or remain unchanged. Changes in the states 

of nature are referred to as transitions. For a 

series of states to display the Markovian 

property, it indicates that future states of the 

probabilistic system are conditionally 

independent of prior states given their 

current states of nature (Obodos, 2005). 

 

Markovian chains are therefore regarded as 

a series of events in which the probabilities 

of occurrences for every event depends 

upon their immediately preceding events. 

Theoretically, they could also be referred to 

as a first-order Markovian Chain Process, or 

first-order-Markovian. For finite Markov 

Chains, it is assumed that the sequence of 

events have some of the following 

Markovian properties: (i) outcomes for 

successive experiment are only one of a 

finite number of possible outcomes a1, a2,..., 

an, (ii) probability of occurrence of outcome 

aj for every given experiment may not 

necessarily be independent of the outcomes 

of  previous successive experiments, but 

rather, it is very much largely dependent at 

the very most upon the outcome, ai of  its 

immediately preceding experiment, (iii) 

there exist given numbers Pij that usually are 

representative the probability of outcome aj 

for each experiment, as far as outcomes ai 

have been seen to have occurred in 

preceding experiments. These are therefore 

the probabilities of moving from initial 
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position i to the new position j from a single 

step or movement. This movement is 

mathematically presented as Pij. The 

outcomes a1, a2,..., an are called states and 

the numbers Pij are called transition 

probabilities. The number of experiments, 

or number of movements are often referred 

to as steps. In some instances, the 

probability distribution of the initial state 

may be given, but this may not be very 

necessary when determination of steady 

state equilibrium is the focus (Agbadudu, 

1996). The number Pij which represents the 

probability of moving from state ai to state aj 

in one step can readily be portrayed  in a 

matrix form called a transition matrix. This 

matrix for general finite Markov Chain 

processes exhibiting states a1, a2,..., an are 

mathematically denoted as follows: 

 

                           P11 P12  … P1n 

P = Pij=     P21 P22  … P2n     

(3) 

  Pn1 Pn2  … P2n  

 

Here, the sum of the elements of each row 

of the matrix P is 1. This is because the 

elements in each row represent the 

probability for all possible transitions (or 

movements) when the process is in a given 

state. Therefore, for state ai, i = 1,2,..., n the 

transition probabilities is given as follows: 

∑     

 

   

             

 

If we let E1, E2, ..., Ej (j = 0, 1 2, ...) 

represent the exhaustive and mutually 

exclusive outcomes (states) of a system at 

any time. Initially, at time to, the system 

may be in any of these states. Let aj
(0)

 (j = 0, 

1, 2, ...) represent absolute probabilities of 

the experimental system being in a state Ej 

at a time t0. If we further assume that the 

system displays Markov characteristics, it 

will yield transition probabilities 

mathematically presented in equation 5. 

 Pij = P {tn = j|{tn-1 = i} 

   (5) 

 

This basically is a one-step probability of 

moving from a prior state i at tn-1 to a new 

state j at tn; for as long as we assume that 

these probabilities are stationary over time. 

Transition probabilities from states Ei to 

states Ej may therefore be readily organised 

a matrix form as shown in equation 6.  

 

P00 P01 P02 P03 

P10 P11 P12 P13 

P = Pij= P20 P22 P22 P23       (6) 

 P30 P31 P32 P33 

 

 

 

The matrix P is often referred to as a 

homogenous transition or stochastic matrix 

due to the fact that every transition 

probability Pij are fixed for all the 

experiments and are as well also 

independent of time. The probabilities Pij 

must sufficiently satisfy the conditions 

mathematically presented in equation 7. 

∑                  

Pij  0 for all i and j   (7) 

 

Indicating that all row probabilities must 

add up to one while any single entry in the 

row or column could have a probability of  

0. The Markov Chain is now defined. The 

existence of the transition matrix P along 

with its initial probability {aj
(0)

} associated 

with its own prior state Ej completely 

defines a Markov chain model (Taha, 2001). 

It is usually common to regard Markovian 

models at best as models portraying 

transitional behaviour of probabilistic 

systems within a range of equal intervals. 

Theoretically, situations could exist where 

the length of the interval depends only upon 

the characteristics of the system and hence 

may really not be equal. This case is 

referred to as imbedded Markov Chain. 

 

Classification of States in Markov Chains 
In the study of the various aspects of 

Markov Chains, it is necessary to note that 

several types of states may exist. In 

Markovian analysis, it is common to be 
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interested in the behaviour of the system 

over a short period of time. In this case the 

absolute probabilities are computed as 

shown in the preceding section. A more 

important study involves the long-run 

behaviour of the system as the number of 

transitions tends to infinity. In such a case, a 

systematic procedure that will predict the 

long-run behaviour of the system is required 

(Taha, 2001). The following definitions 

covers some of the popular states in Markov 

Chains 

 

Irreducible Markov Chain 
Markov Chains are defined as irreducible 

once all possible state Ej can be arrived at 

from prior state Ej after a certain finite 

number of transitions for I  j with  

Pij
(n)

 > 0, for 1  n <                         (8) 

In this scenario, we say all the states of the 

Markovian system communicate. 

 

Translent States  

If we let T be a subset of S and T
1
 its 

complement. Supposing every state of T
1
 

can be reached from every prior state of T; 

and it is readily possible to move from one 

state of T to a new state of T
1
 (but not vice-

versa) then state T is called a transient set. 

A transient state being an element of a 

transient set (Agbadudu, 1996; Idolor, 

2009). 

 

Closed Set and Absorbing States 
In Markovian systems, the set C of states is 

referred to as being closed if the Markovian 

probabilistic system; once in any of the 

states of C, persistently remains that state 

indefinitely. A special example of a closed 

set is a single state Ej with transition 

probability Pij = 1. In this case Ej is called 

an absorbing state. All the states of an 

irreducible chain must form a closed set and 

no subset can be closed. The closed set C 

should satisfy all the Markovian conditions 

and hence could also be studied 

independently. A state K is referred to as 

being in an absorbing state if Pkk = 1. As 

long as the chain visits K it continues to 

remain in that state forever. If K satisfies 

the condition to be regarded as an absorbing 

state, the first passage probability from i to 

K can be regarded as the probability of 

absorption into K, having started at i. 

Whenever there are more than one 

absorbing states in a chain, there is the 

evident possibility of the process being 

absorbed into one of the states, hence the 

need to also desirably find the probabilities 

of absorption. The probabilities are easily 

obtained mathematically by resolving a 

system of linear equations. If we assume 

that a Markov Chain is such that ultimately 

one of the absorbing states will be reached; 

if the state is in an absorbing state, the set of 

absorption probabilities fik is said to satisfy 

the following mathematical properties. 

Fik = Pij Fjk, for all i = 0, 1,...,M. 

 (9) 

j=0 

subject to the conditions that: 

Fkk = 1,  

Fik = 0 if state i is recurrent and i  k. 

 

Absorption probabilities are important in 

"random walks". A random walks are 

Markovian chains with properties 

suggesting that if the system is positioned in 

state i, with a single on step transition, the 

system could remain at i or very 

conveniently move to any one of the 

numerous states that are immediately 

adjacent to state i (Hilier & Lieberman, 

1990). 

 

Ergodic States 
These are set of states where once the 

process moves into it, the process cannot 

leave it; rather it moves thereafter among 

states in the set (Agbadudu, 1996, Taha, 

2001; Eriki & Idolor, 2009; Idolor & 

Braimah, 2015). If all the states of a Markov 

Chain are ergodic, then the chain is 

irreducible as shown in equation(10).  

a
(n)

 = a
(0)

P
n   

(10) 

In this case, the absolute probability 

converges clearly to a particular limiting 

distribution as as long as n→, whenever 
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this limiting probability distributions are 

independent of the initial probability 

distributions a
(0)

 (Taha, 2001). 

 

Classification of Chains 
When analysing the various aspects of 

Markov theory, it is often advisable to note 

the several forms of Markov chains that are 

in existence. The chains are very easily 

classified according to the states of nature 

they contain (Agbadudu, 1996; Eriki & 

Idolor, 2009). Two common chains in 

elementary applications of Markovian 

theory are Ergodic and absorbing 

Markovian chains. These chains are briefly 

discussed in the following subsection 

section.  

 

Ergodic Chains 
Ergodic chains are Markov chains that make 

it uniquely easy to go between any two 

states which do not need to be in only one 

step. This we refer to as a chain consisting 

of single sets of ergodic states. Two 

common types of ergodic chains are the 

cyclic and regular chains. In cyclic chains, 

each state can only be entered at certain 

period of intervals. That is, each state is 

period; with a state being periodic with 

period t if a return is possible only in t, 2t, 

3t,..., steps. This mathematically simply 

means that Pii
(n)

 = 0 whenever n is not 

divisible by t. Regular chains are non-cyclic 

ergodic chains. Regular chains are an 

important special class of ergodic chains. It 

is a situation in which some n (n  2) P
n
 has 

no zero entries. That is, it is possible to go 

between any two states in n steps. 

 

Absorbing Chains 
A chain is often referred to as an absorbing 

chain, once it has in existence at the very 

least one absorbing state already and if, 

from every prior state, it is mathematically 

feasible in one or more steps to reach an 

absorbing state (Idolor, 2009) 

 

3.0 METHODOLOGY 

In January 2005, the population of deposit 

money banks in Nigeria was twenty-five 

(25). We randomly selected, through 

balloting, four (4) banks quoted in the 

Nigerian bourse. Our emphasis on the 

banking sector is justifiable as the Nigerian 

banking sector has continued to be the most 

actively traded sector in the bourse. In 

addition, our time frame was chosen in 

order to capture the period of the 2005 

banking industry reform and consolidation 

as well the 2008 global financial meltdown 

which is believed to have triggered a value 

meltdown in the Nigerian bourse.  The 

equity prices of the four (4) randomly 

selected banks, collected on a daily basis, 

ranging from 4
th

 January 2005 to 4
th

 

December 2008 constituted our data source 

for our analysis. We derived our data from 

Cashcraft Asset Management Limited 

official website. The only stipulated 

condition for selecting the securities in our 

sample is that secondary data on the stock 

price movements must be available for the 

entire period covered. This implies that the 

deposit money banks must have data for the 

period ranging from 4
th

 January 2005, to, 4
th

 

December 2008. The four randomly selected 

deposit money banks are: Access Bank, 

United Bank for Africa (UBA), Eco Bank, 

and First Bank of Nigeria (FBN). 

 

The Market Price Mechanism  

Most stock exchanges in the world today 

run on the Automated Trading System 

(ATS) (NSE, 2017). Each trading day, 

Brokers representing the interest of 

investors go to the floor of the exchange 

with their bid prices (Pb) and offer prices 

(Po) for various quantities (q) of stock, xyz. 

One can therefore imagine a situation where 

brokers come with. Pb1 for q1 for investor 1 

(who is interested in buying into xyz), Pb2 

for q2 for investors 2 (who is interested in 

buying into xyz), Pb3 for q3 for investor 3 

(who is interested in buying into xyz) and 

Po1 for qd1 for investor d1 (who is 

interested in divesting from xzy), Po2 for 

qd2 for investor d2 (who is interested in 

divesting from xzy), and Po3 for qd3 for 

investor d3 (who is interested in divesting 

from xzy) 
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It will not only be cumbersome but 

painstaking in trying to settle these interests. 

Therefore the ATS makes allocation to 

buyers according to bid prices (Pb) with 

particular reference to offer prices (Po). 

That is, investor i with the highest bid price 

(Pbi) is allocated qi quantities of xyz 

security for Pbi price, provided Pbi is not 

less than the offer price Poi, then the system 

allocates to the next highest investor i with 

the next highest pbi until all the available 

quantities of the stock qdi are allocated at a 

price not less than their quoted Poi (Obodos, 

2005; Eriki & Idolor, 2009). Therefore, for 

any particular trading day, all traded 

security would have a range of prices for 

which they changed ownership. These price 

ranges from high to low and can quite 

simply be incorporated into the Markov 

Chains model to either predict the future 

direction of prices or provide justification 

for randomness of security prices as we 

have shown in the study.  

 

 

Estimation of a Stock's Transition and 

Initial Probability Matrix 
Any Markov process can be completely 

described by means of its Transition 

Probability Matrix (TPM). For our study we 

propose a three state of nature Markov 

Chain model simply portrayed as rise (r), 

drop (d) and stable (s); is presented to show 

three basic possible price movement of a 

stock on any particular trading day. We also 

propose that given any previous state it is 

still possible to migrate to a new state. Thus 

we can have a rise leading to a rise, a rise 

leading to stable prices and a rise leading to 

a drop in prices. This we depicted as rr, rs 

and rd in Figure 1. Similar conditions are 

also projected for movements in prices 

when the prior states are stable or dropping 

prices. Hence we also have similar 

scenarios captured in Figure 1 depicted as 

dr, dd, ds, sr, sd, and ss. For the current 

model we present also a directed graph 

shown in Figure 1 to depict the Markovian 

price movement process. The labelling 

portrays the probability of moving from 

state to state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Directed Diagram of Transition 

 

Stable (s)  

Drop (d) 

Rise (r) 

Pss  

Psr 

Prs 

Psd 

Pds 
Pdd 

Pdr 
Prd 

Prr 
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As shown in Figure 1, transition could 

readily occur from one state to the other, 

denoting a stable (s), rise (r), and, drop (d) 

scenario. The probabilities of migrating to 

the next state is given as Pi and the sum of 

probabilities of a necessity must 

mathematically approximately equal one 

(1). This is depicted as follows: 

∑    Pi = 1 

i=1 

 

Therefore, given the initial probability 

vector Uo, the probabilities of the system 

migrating to the next state after transition 

tables are derived are mathematically 

presented as follows: 

U1 = U0.P (Note that Uo and P are vectors) 

U2 = U1.P 

U3 = U2.P 

 Un = Un-1.P 

 

This basically generates the probability of 

the equity prices transiting from one state to 

the other. The probabilities of each possible 

state are mathematically computed using the 

estimation procedures below: 

 

  

r  = ______________ 

∑Pr + ∑Ps + ∑Pd 

 

d  = ___________________ 

∑Pr + ∑Ps + ∑Pd 

 

 

s  = ___________________ 

∑Pr + ∑Ps + ∑Pd 

rr = 
  


 sdr

r

PrPrPr

Pr
 

rd = 
  


 sdr

d

PrPrPr

Pr
 

rs = 
  


 sdr

s

PrPrPr

Pr
 

dr = 
  


 PdsPddPdr

Pdr
 

dd = 
  


 PdsPddPdr

Pdd
 

ds = 
  


 PdsPddPdr

Pds
 

sr = 
  


 PssPsdPsr

Psr
 

sd = 
  


 PssPsdPsr

Psd
 

         ss        = 
  


 PssPsdPsr

Pss
 

 

∑Pr 

∑Pd 

∑Ps 
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Using our simple estimation procedures 

above, a short term daily Markovian model, 

for three states of nature capturing a rise, 

drop and stable prices, with transition and 

initial probability matrix is thus given:  

 

Uo = [Ur  Ud  Us] = [Pr Pd Ps] 

Also, 

P =            Prr     Prd    Prs 

   Pdr Pdd Pds 

   Psr Psd Pss 

 

 

Uo = Initial Probability Vector, P = 

Transition Probability Matrix, Ur = Pr = 

Probability of rise in security prices, Ud = 

Pd = Probability of drop in security prices , 

Us = Ps = Probability of security prices 

remaining stable, Prr = Probability of 

security price rise after an initial  rise in 

price, Prd = Probability of security price 

dropping after an initial rise in price, Prs = 

Probability of security price remaining 

stable after an initial rise in price, Pdr = 

Probability of security price rising after an 

initial drop in price, Pdd = Probability of 

security price dropping after an initial drop 

in prices, Pds = Probability of security price 

remaining stable after an initial drop in 

prices, Psr = Probability of the security price 

rising after an initial stable price, Psd = 

Probability of security price dropping after 

an initial stable price, Pss = Probability of 

the security price being stable after an initial 

stable price. 

 

Estimation and Testing Procedure 

For our estimation and testing, we borrow 

greatly from the field of mathematics and 

binary operations. We basically dealt with 

zeros and ones as popularly used in binary 

combination and binary mathematics. Here 

a 1 (one) is used to represent the actual 

occurrence of an event while 0 (zero) 

represented nonoccurrence. In sum, this 

approach is adopted for the over eight 

hundred daily stock prices, after which a 

frequency count is taken. Using simple 

probability and statistical methods quite 

common to the die and coin tossing 

problem, a set of formulae is derived for the 

estimation of the probabilities of the various 

states (see Anderson & Goodman, 1957; 

Fielitz & Bhargava, 1972; Obodos, 2005; 

Idolor, 2009; Eriki & Idolor, 2010; Idolor & 

Braimah, 2015). 

 

4.  ESTIMATION RESULTS AND 

DISCUSSION OF FINDINGS  

We provide empirical results from the 

Markovian model utilised. Our first 

objective was to derive the initial 

probabilities and transition probabilities 

with the aide of the transition tables 

developed for the analysis; after which the 

probabilities of the system moving to the 

next state was computed for nine 

consecutive days. These is given in Table 1 

to 4. Markov Chains are theoretically 

assumed to be relevant in the financial 

analysis of equity prices and returns, since 

they can be useful for providing informed 

probable assumptions about security price 

and returns movement. The superior 

probability value in the matrices in this 

regards serve as the basis for our final 

decision; and may theoretically give a final 

decision on the general direction of price 

levels in the bourse for the short run. Once 

this can be achieved, the probabilities is 

thus be assumed to provide a fairly 

conservative projection of equity price and 

returns in the bourse. This is also true for 

long run predictions which on the average 

aims at projecting a long range indication of 

the prospects of an individual security.
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Table 1:  Probability of the system moving to the next state (nine days prediction) for 

Access Bank Plc. 

S/N Date Un = [Ur           Ud           Us] Price 

1 30/06/2008 Uo = [0.2716   0.2633    0.4650] 17.64 

2 01/07/2008 U1 = [0.2782   0.2586    0.4628] 18.52 

3 02/07/2008 U2 = [0.2791   0.2594    0.4609] 18.71 

4 03/07/2008 U3 = [0.2798   0.2600    0.4594] 17.8 

5 04/07/2008 U4 = [0.2803    0.2604   0.4582] 18 

6 07/07/2008 U5 = [0.2807    0.2607   0.4572] 18.3 

7 08/07/2008 U6 = [0.2810    0.2610   0.4564] 18.02 

8 09/07/2008 U7 = [0.2813   0.2612    0.4557] 18 

9 10/07/2008 U8 = [0.2815   0.2613    0.4551] 18.15 

10 11/07/2008 U9 = [0.2816   0.2614    0.4546] 18.01 

* Rows may not add up to one exactly because of rounding. 

 

The results from Table 1 shows that the 

Markovian framework did not give an 

accurate projection of the actual direction of 

prices in the bourse for the period under 

study. Surprisingly, it seems to suggest that 

prices will continuously remain stable for 

the nine day period when in actual fact there 

was a high degree of fluctuations in prices. 

 

Table 2:  Probability of the system moving to the next state (nine days prediction) for 

UBA Plc. 

S/N Date Un = [Ur           Ud           Us] Price 

1 30/06/2008 Uo = [0.1477   0.1125    0.7397] 24.24 

2 01/07/2008 U1 = [0.1483   0.1128    0.7386] 25.4 

3 02/07/2008 U2 = [0.1487   0.1131    0.7376] 25 

4 03/07/2008 U3 = [0.1491   0.1134    0.7367] 24.51 

5 04/07/2008 U4 = [0.1494   0.1136    0.7359] 23.6 

6 07/07/2008 U5 = [0.1497   0.1138    0.7352] 23.99 

7 08/07/2008 U6 = [0.1499  0.1140     0.7345] 23.93 

8 09/07/2008 U7 = [0.1501   0.1141    0.7339] 23.98 

9 10/07/2008 U8 = [0.1503   01142     0.7333] 24.2 

10 11/07/2008 U9 = [0.1504   0.1143    0.7328] 24.1 

* Rows may not add up to one exactly because of rounding. 

 

The results from Table 2 shows that the 

Markovian framework did not provide an 

accurate prediction of the actual direction of 

prices for the period under study. The 

results seems to suggest that prices will 

continue to remain stable for the nine day 

period when in actual fact there was a high 

degree of fluctuations in prices. 

 

Table 3. Probability of the system moving to the next state (nine days prediction) for 

ECO Bank Plc. 

S/N Date Un = [Ur           Ud           Us] Price 

1 30/06/2008 Uo = [0.2432   0.2314    0.5252] 7.87 

2 01/07/2008 U1 = [0.2430   0.2325    0.5240] 8.26 

3 02/07/2008 U2 = [0.2433   0.2331    0.5229] 8.29 

4 03/07/2008 U3 = [0.2436   0.2335    0.5219] 8.18 

5 04/07/2008 U4 = [0.2439   0.2338    0.5210] 8.17 

6 07/07/2008 U5 = [0.2442   0.2340    0.5202] 8.24 
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7 08/07/2008 U6 = [0.2444  0.2342     0.5195] 8.33 

8 09/07/2008 U7 = [0.2446   0.2344    0.5189] 7.93 

9 10/07/2008 U8 = [0.2448   0.2346    0.5183] 7.96 

10 11/07/2008 U9 = [0.2449   0.2347    0.5178] 7.8 

* Rows may not add up to one exactly because of rounding. 

 

The results from Table 3 shows that the 

Markovian framework did not provide a 

reliable projection of the actual direction of 

prices for the period under study. The 

results seems to suggest that prices will 

continue to remain stable for the nine day 

period when in actual fact there was a high 

degree of fluctuations in prices. 

 

Table 4: Probability of the system moving to the next state (nine days prediction) for 

First Bank Plc. 

S/N Date Un = [Ur           Ud           Us] Price 

1 30/06/2008 Uo = [0.3960   0.3783    0.2256] 42.77 

2 01/07/2008 U1 = [0.3950   0.3791    0.2256] 43.8 

3 02/07/2008 U2 = [0.3947   0.3791    0.2256] 43.45 

4 03/07/2008 U3 = [0.3946   0.3790    0.2255] 42.44 

5 04/07/2008 U4 = [0.3945   0.3789    0.2254] 41.99 

6 07/07/2008 U5 = [0.3944   0.3788    0.2254] 41.91 

7 08/07/2008 U6 = [0.3843   0.3787    0.2253] 41.45 

8 09/07/2008 U7 = [0.3942   0.3786    0.2253] 41.96 

9 10/07/2008 U8 = [0.3941   0.3785    0.2252] 42.01 

10 11/07/2008 U9 = [0.3940   0.3784    0.2251] 43.9 

* Rows may not add up to one exactly because of rounding. 

 

The results from Table 4 shows that the 

Markovian framework did not give a 

reliable prediction of the direction of prices 

for the period under study. Even the few 

correct predictions were few and far 

between; and seem to be due mainly to 

chance. From Table 1-4, it is seen that the 

Markov Chain model did not give a reliable 

projection of price movements for the 

period studied in the short term. This may 

suggest randomness in stock price 

behaviour which has been documented in 

the extant literature often as reflecting the 

case in the more advanced stock markets. 

For now the view is held (based on the 

findings) that Markov Chains cannot be 

used to predict the direction of security 

prices in the Nigerian capital market at the 

moment. Our findings are consistent with 

some related studies conducted by Fielitz 

(1969), Fielitz and Bhargava (1973), 

Mcqueen & Thorley, 1991;  Eriki and 

Idolor (2010) and Idolor and Braimah 

(2015) where the Markov Chains for daily 

closing and high price relatives were found 

to be non-stationary and therefore could not 

be used for predictive purposes. Our 

findings generally agree with much of the 

extant literature that suggests that stock 

market prices are random and cannot 

readily be predicted. We therefore posit that 

Markovian analysis can be used to test the 

random walk hypothesis, as our findings 

have shown; and indeed other probabilistic 

aspects of the different forms of efficient 

market hypothesis under a uniquely 

different set of assumptions than is 

traditionally needed in the extant literature. 

 

5. CONCLUSION AND 

RECOMMENDATIONS 

In the preceding sections, we attempt to 

provide some veritable means of applying 

Markovian in theory in equity price 

analysis. Our findings show that possible 

states of nature of equity price behaviour 
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can readily be interpreted within the 

framework of Markovian theory in a way 

that provides useful information to the 

portfolio manager. The study examined the 

stock prices of four (4) randomly selected 

deposit money banks quoted in the Nigerian 

bourse. Our main objective was to attempt 

to project the future price movement or 

direction of the equities of the selected 

deposit money banks using their past equity 

price information. Our findings reveal that 

equity price movement could not be 

predicted with the aide of the computed 

probabilities; and tended to agree with the 

already established opinion in the empirical 

literature that stock prices are random. One 

possible explanation for this occurrence is 

that different companies are affected at 

different times by new information that 

could produce significant differences in the 

runs and in the large reversal patterns 

among daily stock prices. For example, 

some companies might experience price 

runs as a result of favourable (unfavourable) 

earning reports, dividend policies, and 

industry news, while at the same time other 

companies would not be similarly affected 

by this information and their daily price 

change behaviour would then be different. 

On the other hand, some companies may 

experience large reversal patterns because 

of the uncertainty relative to new 

information, while at the same time other 

companies would not be similarly affected. 

Moreover, because new information 

becomes available at various times, 

heterogeneous behaviour among stocks is 

further compounded. While the price 

behaviour of some groups might be affected 

by today's news, tomorrow's news could 

conceivably affect a different group of 

stocks. In addition standard statistical tests 

for homogeneity, stationarity and order of 

the chains in vector process Markov Chains 

is suggested. If the test shows heterogeneity 

and nonstationarity in the chains, then it 

confirms randomness in stock prices and 

can thus serve as a further piece of evidence 

in support of the random-walk hypothesis. 

 

The application of Markovian theory in 

equity price analysis still remains largely an 

unexplored area in the extant literature, and, 

probably a very fruitful one as well. Our 

findings and procedures provided in the 

study, at the very least, could be taken as a 

pioneering and rudimentary effort; which in 

a worst case scenario could be interpreted 

largely as simple illustrations. Some 

reasonable research work needs to be 

conducted on further refinements in the 

Markovian model such as a Bayesian-type 

updating of the transition probability matrix 

(TPM). Additional empirical refinements 

could also be carried out on the model 

assumptions before the results from it can 

be said to yield further statistically strong 

reliability. We conclude with a 

consideration of the possible predictive 

capabilities of a Markov process 

representation of changes in price when the 

condition of stationarity and homogeneity in 

the vector process is satisfied. In stationary, 

Markov process, tomorrows expected price 

change given today's price change can be 

estimated. After several steps, the memory 

of the starting point is lost. All that remains 

is the steady-state transition matrix, and, the 

characteristic vector, that provides the 

probabilities of being in one new state 

independent of the prior states. 

 

Thus far, in the development of the 

mathematical theory of Markov Chains, 

little is known regarding the empirical 

analysis of non-stationary models (those 

with non-stationary transition probabilities). 

This class of chains is so general that in 

most cases they are of little predictive value. 

Even the two-state chain is extremely 

complicated to analyse, and widely different 

types of behaviour are possible, depending 

on the nature of the transition probabilities. 

Thus, finding some specific manner in 

which the transition probabilities change is 

necessary before a detailed study becomes 

possible. However, the possibility exists 

that the Markov formulation of the 

individual process model developed here 

can be used for predictive purposes if the 
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non-stationarity present in the transition 

probabilities can be identified and corrected. 

Efforts along this line, say, by regression 

analysis, seem to us to be fruitful areas for 

further research. In this light, we can only 

adopt the position that at best Markov 

Chains (for now) only helps to enrich our 

understanding of stock price behaviour (as 

far as the random walk hypothesis is 

concerned) even if the ultimate goal of 

prediction still proves rather difficult and 

elusive. 
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