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Abstract

In this paper, we aim to provide a detailed econometric analysis of the realised volatility
in international stock markets of Brazil, China, Europe, India, the United Kingdom, and the
United States, which represent a mix of large developing, and developed markets. For our
purpose, we use the Functional Data Analysis (FDA) framework, whence discrete volatility
data were first transformed into continuous functions, and thereafter, derivatives of the contin-
uous functions were investigated, and kinetic and potential energy associated is the volatility
system were extracted. Results revealed that COVID-19 indeed had a significant effect on in-
ternational financial market volatility for all the countries, with the exception of China. The
realised volatility of the international financial markets did return to their pre-COVID levels in
May 2020, and this recovery time was significantly faster than the 2008 financial crisis recov-
ery period. Within the FDA framework, we further investigated the role of uncertainty on the
realised volatility, specifically from an outbreak of an infectious disease (such as COVID-19)
and a daily newspaper-based infectious disease index as the predictor. The regression analysis
showed that the volatility of financial markets can be accurately modelled by this infectious
disease index, but only for periods experiencing an epidemic or pandemic.

JEL Codes: C22; C51; C52; C53; G15.
Keywords: Realised volatility; International stock markets; Functional data analysis.

1 Introduction
In 2019 the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identi-
fied in Wuhan City, the Capital of Hubei province, China. This highly contagious respiratory
disease, commonly referred to as COVID-19, spread quickly to numerous countries worldwide,
and was declared a global pandemic by March 2020. Due to the infectiousness and severity of
COVID-19, governments enforced sudden and severe restriction measures on travel, social
gatherings, and commercial and economic activities, resulting in unprecedented uncertainty
within international financial markets [Díaz et al., 2022]. In the aftermath of the pandemic, it
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has led to a unique opportunity to gain valuable insights concerning the reaction of international
financial markets to a global infectious health crisis, and to evaluate and compare the recovery
trajectory across countries.

Volatility can be described as the dispersion of returns for a particular asset and is often
calculated using the standard deviation or variance of the specific asset returns. It is a measure
that can be interpreted as the amount of risk or uncertainty associated with a particular asset.
Volatility is not the same as risk, but rather a measure that is interpreted as risk or uncertainty
[Poon and Granger, 2003]. High uncertainty is often synonymous with high-risk assets, and
can be used to interpret economic vulnerability, which is critical in the operation of financial
markets [Zaremba et al., 2020].

There is a crucial connection between financial market uncertainty and investor confidence.
Therefore, volatility acting as an indicator of financial risk [Poon and Granger, 2003] and as
a result, it can aid governments, individual investors, portfolio fund managers, policymakers
and financial institutions in making their respective decisions [Baek et al., 2020]. As per the
Basel Accord established in 1996, it is compulsory for many financial institutions to forecast
volatility, and use it as an input to risk-management [McAleer and Medeiros, 2008; Poon and
Granger, 2003].

While volatility is a key indicator of the vulnerability of financial markets, developing mod-
els or forecasts using volatility presents an inherent problem [McAleer and Medeiros, 2008],
because by its very nature, volatility is latent and, therefore, is not directly observable [An-
dersen et al., 2006; McAleer and Medeiros, 2008]. Most models using latent volatility do not
accurately capture all the facts (such as the declining autocorrelations within the squared re-
turns) when dealing with financial time series [McAleer and Medeiros, 2008]. This presents
an opportune to utilise the concept of realised volatility, which is the sum of squared intra-day
returns at specific intervals [Bollerslev et al., 2003; Poon and Granger, 2003]. Typically, the
sampling time for intra-day returns is five or ten minutes (sparse sampling), but it has been
reported to be optimal in the range of thirty to sixty-five minutes [McAleer and Medeiros,
2008]. The smaller the sampling time (higher frequency sampling) results in higher accuracy
and increased microstructure noise, presenting a useful trade-off [McAleer and Medeiros, 2008;
Meddahi, 2002].

The realised volatility error denoted by un, has the property of E(un|σ2
n) = 0, where σ2

n

is the actual volatility [Barndorff-Nielsen and Shephard, 2002]. Thus, the estimated realised
volatility error, which is a function of the actual volatility, is zero. From the property mentioned
above, it is evident that realised volatility is an unbiased indicator for actual volatility [Boller-
slev et al., 2003; Barndorff-Nielsen and Shephard, 2002] and provides a consistent estimate
of price fluctuations over a specific time [Andersen et al., 2006]. Generalised auto-regressive
conditional heteroscedastic (GARCH) models are commonly utilised to model standard time-
varying volatility. The conditional variance is a deterministic function of model parameters
and historical data. Stochastic volatility (SV) models are also popular among researchers.
Volatility is a latent variable that follows a stochastic process in this situation. In the litera-
ture, the GARCH and SV models are often utilised. However, these models suffer because the
underlying volatility estimate is neither model free nor unconditional. The realised volatility
has the advantage of being unconditional. Ultimately, by utilising realised volatility as a mea-
sure, the volatility becomes "observable" and can be modelled directly [McAleer and Medeiros,
2008]. Nonetheless, the realised volatility is still not free of the ever-present measurement er-
rors [Bollerslev et al., 2003]. However, realised volatility resolves the latent variable issue and
provides investors with an observable metric of uncertainty in the market. We use realised
volatility in this research which is based on intra-day data and is rich in information based
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on large number of observations being recorded daily, in turn, providing an observable and
unconditional estimate of the process of volatility.

This research is important for a number of reasons, and ultimately aims to enable individual
investors, policymakers and governments to make better decisions in the future. Specifically,
the research objectives in this study include, but are not limited to the following:

• How and to what extent did the COVID-19 pandemic affect the evolution of risk or
uncertainty within international financial markets?

• How does this compare to one of the other recent Global Financial Crisis?

• Does the realised volatility differ between the developed and emerging markets during
the COVID-19 pandemic?

• Can the daily newspaper-based infectious disease index predict the realised volatility of
international financial markets?

A statistical framework is required to analyse realised volatility, and we present a strong
argument for using Functional data analysis (FDA) techniques in this endevour to analyse the
role of uncertainty in international financial markets due to the COVID-19 pandemic, as well
as predict the realised volatility using the infectious disease index through FDA techniques
[Mangisa et al., 2019]. The realised volatility, the sum of squared intra-day returns, has been
condensed into a single daily value. This daily value has been computed over several years,
resulting in an extensive data set of discrete points over time, and therefore traditional time
series methods would be a logical choice. The standard approach to analysing stock market
data is time series, however, it suffers from many mathematical constraints. FDA offers an
alternative approach to analysing time series data.

Past literature indicates that FDA has increased in popularity and is being used to better
analyse time series data [Ullah and Finch, 2013]. One of the major drawbacks of classical
time series approaches is that data observation intervals need to be equally spaced. The FDA
approach is flexible as it does not require an equal time interval between observations [Muller,
2011]. This applies to the realised volatility data set. Although a realised volatility value is
computed daily, most major stock markets close trading on weekends and some public holi-
days. Multiple international financial markets were analysed and compared. However, the time
interval between observations varies due to the time zones and public holidays. Thus, FDA is
highly advantageous due to the flexible nature of the approach when it comes to timing inter-
vals between observations. Additionally, the FDA approach considers that the values observed
at different times for a single object may be dependent [Mangisa et al., 2019; Ullah and Finch,
2013].

Due to technological advances, a higher density of sampling can be done over a shorter
time interval, generating discrete time series data sets of considerable size. Classical time
series approaches often treat such discrete time series data as multivariate data [Ullah and
Finch, 2013]. The classical time series multivariate approach fails to capture the functional
behaviour that occurs when generating this type of discrete data [Ullah and Finch, 2013]. FDA
is superior in this scenario because this approach handles the whole function as one single
entity [Ullah and Finch, 2013; Mangisa et al., 2019], which results in no cause for concern
about correlations between repeated measurements. In reality, it is common for measurement
errors to be present in the data collection process. Wang et al. [2016], on the other hand,
suggests that any measurement errors that occur throughout the data collection process, can be
characterised as random fluctuations around a smooth trajectory. FDA is well suited to combat
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the issue of measurement errors since repeated measurements are made for a single subject
[Wang et al., 2016].

The functions that arise from FDA methods are assumed to be differentiable to some order
[Mangisa et al., 2019]. This is important, as additional information can be extracted from in-
vestigating the resulting functions’ derivatives (rate of change), which is not easily obtained by
using traditional statistical methods [Ullah and Finch, 2013]. Rate of change analysis, using
phase-plane plots, can result in extremely useful insights relating to the financial markets. FDA
allows the user the opportunity to conduct rate of change analysis in a more elegant fashion
compared to classic time series methods. Furthermore, many traditional statistical tools rely
on the property of stationarity being present within time series data. Stationarity is the con-
cept whereby the process of generating a time series does not change over time. However,
in most cases, time series data does violate this assumption [Mangisa et al., 2019; Das et al.,
2019]. Financial data, such as the realised volatility of international markets, would require
transformations to ensure mean-reversion if traditional statistical methods were applied [Das
et al., 2019]. Conversely, Muller [2011] noted that, when using FDA, the underlying process
does not have to be stationary.

Thus, it is clear FDA is a tool that overcomes many limitations associated with traditional
time series statistical methods. It is moot to mention here that FDA is a complementary tool,
and by no means replaces the traditional time series methods, but rather extends traditional sta-
tistical techniques by creating a function without extracting statistical indexes from the stock
market data, which avoids critical information loss [Muller, 2011]. Due to the reasons men-
tioned above and because it is a tool not widely used, the FDA approach was utilised and the
authors hope that this application will shed new light and lead to interesting insights contined
in the results.

Our paper makes multiple contributions. From a methodological standpoint, an extensive in-
vestigation into smoothing with B-splines was conducted with the aim to investigate the claim
that a fourth-order B-spline with knots at each argument smooths the data with the best accu-
racy. This claim was found to be accurate, however, only at low smoothing parameter values.
For higher smoothing parameter value, less was the smoothing accuracy which was affected
when utilising different B-spline orders. Second, a significant contribution of this research is
in the extraction of the potential and kinetic energy from phase-plane plot analysis. To the au-
thors’ knowledge, a function to extract these quantities has not been attempted before and was
not available at the time article was written. This extraction of energies from phase-plane plots
can be applied to other applications as a visualisation tool, and thus is not limited to realised
volatility as was applied in this work.

The application part of this research involved applying FDA techniques to realised volatil-
ity data, and to daily newspaper-based equity market volatility due to the infectious diseases
index data set. In the process, this research contains a review of the Global Financial Crisis
(GFC) and the COVID-19 pandemic, and their effect on the realised volatility of international
financial markets. The review presented here contributes to the growing literature on the GFC,
COVID-19 pandemic and realised volatility. The two data sets used provided an opportunity
to demonstrate the FDA techniques mentioned, and to gain insights into the behaviour of re-
alised volatility of financial markets, with particular focus on COVID-19. The FDA techniques
provided insightful findings and conclusions. In summary, this study contributes to the knowl-
edge of how financial crises, specifically that induced by the COVID-19 pandemic, affected
the realised volatility of both emerging and developed financial markets. Lastly, this research
contributes to the area of literature that looks at daily newspaper-based equity market volatility
due to the infectious diseases index.
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The remainder of the paper is organised as follows: In Section 2 we provide a detailed de-
scription of the data and its associated transformations required for the FDA approach. The
Sections 3 and 4 are devoted to the methodology and empirical findings. Finally, Section 5
concludes the paper with a summary of empirical findings and its associated economic impli-
cations.

2 Data and Transformations
There were two different data sets utilised in this research. The first is a data set that contains
realised metrics of 31 stock market indices. The second is a data set that contains a daily
measure of equity market volatility (EMV) due to infectious diseases. The details of both data
sets are provided below.

2.1 Data

2.1.1 Realised Volatility Data Set

Realised volatility data were obtained from the Oxford-Man Institute of Quantitative Finance:
Realised Library, created by Heber et al. [2009] and is available at https://realized.
oxford-man.ox.ac.uk/data. It is freely available to the public without any restrictions,
and hence there was no need for ethical clearances or non-disclosure agreements. This realised
library is determined from underlying high-frequency data obtained from the Thomson Reuters
Tick History database. This data is of high quality and has been cleaned to remove observations
recorded outside the interval of when the exchange is open [Heber et al., 2009]. The econo-
metric measures available within the data set have been computed using high-frequency daily
financial returns, with techniques summarised in Shephard and Sheppard [2010].

At the time of writing, this data set was last updated on 28 June 2022 and contained daily
financial estimators for 31 stock market indices. It is in the comma-separated values (CSV)
format with several econometric measures, and all are represented as columns in the file. Ap-
pendix A Table 6 contains a summary of all the econometric measures available. Table 6 has
a row highlighted in bold, which is of particular importance. The rv10 column contains the
daily realised variance at a sampling frequency of 10 minutes. The daily realised variance is
computed using the sum of squared intra-day returns over a specific time-frequency. This can
be described mathematically by the formula,

RVt =
∑

x2
j,t (1)

where xj,t is a return value calculated by,

xj,t = Xtj,t
−Xtj−1,t

(2)

and tj,t is the time of a trade on the t-th day. In this case, the time-frequency is 10 minutes.
Therefore, the rv10 column contains values computed by summing the squared returns of a
specific index every 10 minutes for each trading day. The high-frequency return data, used
to compute the realised variance, contains market microstructure noise. This is the reason
for introducing a sampling frequency, as this averaging is beneficial in reducing the effect of
microstructure noise [Heber et al., 2009]. The reason for choosing the realised variance with 10
minutes sampling frequency (rv10) instead of the 5-minute sampling frequency (rv5) is because
the lower sampling frequency alleviates more noise [Andersen et al., 2006]. Consequently,
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fewer intra-day returns are used in the calculation, and the measurement error may increase
slightly, but the noise reduction is of a higher priority [Andersen et al., 2006].

Referring back to Table 6, the rv5_ss and rv10_ss measures are identical to rv5 and rv10
measures, respectively. The data set contains the econometric measures summarised in Table 6
for 31 market indices over a specific range of time. These market indices and time intervals are
summarised in Appendix A Table 7. The international financial markets this research focuses
on are Brazil, China, the Eurozone, India, the United Kingdom (UK) and the United States
(US). These six financial markets represent emerging (Brazil, China and India) and developed
markets (the Eurozone, UK and US). The rows in bold, in Table 7, are the leading market
indices that represent those respective areas. More specifically, Brazil is represented by the
BVSP BOVESPA Index, China by the Shanghai Composite Index, the Eurozone by EURO
STOXX 50 (50 stocks across 11 countries in Europe), India by NIFTY 50, the UK by FTSE
100 and the US by the S&P 500 Index. At the time of writing, the daily data is available
up until 28 June 2022. However, the date range of interest for this research is between 04
January 2000 (ensuring the earliest available date for all respective markets to be the same)
and 31 December 2021. A total time period of 22 years. The data set required moderate pre-
processing, summarised in Section 2.2.1.

2.1.2 Infectious Disease Data Set

The newspaper-based equity market volatility due to infectious diseases (EMVID) tracker
data was obtained from the Economic Policy Uncertainty website, available at http://
policyuncertainty.com/infectious_EMV.html. It is freely available to the pub-
lic without any restrictions, and for this too there was no need for ethical clearances or non-
disclosure agreements. This data set was created by Baker et al. [2020b] with daily measures
ranging from 01 January 1985 to date and is being updated daily. It is in CSV format with
four columns as summarised in Appendix A Table 9. All four of these columns were utilised
in this research. The date range of interest for this data set is between 04 January 2000 and 31
December 2021. This is 22 years worth of daily data, and the time period is consistent with the
realised volatility data set.

The daily EMVID measure is computed using four sets of terms1, as follows: E for {“eco-
nomic, economy, financial”}; M for {“equity, equities, Standard and Poors, stock market”}; V
for {“risk, risky, uncertain, uncertainty, volatility, volatile”}; and ID for {“coronavirus, disease,
epidemic, ebola, flu, H5N1, H1N1, MERS, pandemic, SARS, virus”}.

Daily counts of newspaper articles that contain at least one of these terms within the four sets
are obtained from roughly 3000 US newspapers [Baker et al., 2020b]. These daily counts are
scaled by the total number of articles within the same day. Lastly, this series is multiplicatively
re-scaled to match the level of the VIX (Chicago Board Options Exchange’s CBOE Volatility
Index) between 1990-2016. See Baker et al. [2019], for the creation of the original EMV index,
without the infectious diseases term. This re-scaling is done by finding the ratio of EMVID to
EMV articles and scaling the EMVID index accordingly [Baker et al., 2020b].

2.2 Transformations
Here, we outline the steps undertaken to prepare the data for the implementation of FDA on
our dataset.

1These four sets of terms were taken verbatim from http://policyuncertainty.com/
infectious_EMV.html and the author does not claim it as his own.
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2.2.1 Data Pre-processing

The data pre-processing step involved aligning the realised volatility data. The underlying func-
tions were over a year, and hence the smoothing was over a domain of a year length. Therefore,
since the date range spans 22 years, the daily realised volatility data was grouped according to
years. The average number of trading days per year was around 252. However, this changed
for some years and is also different across international financial markets. Additionally, trading
days shift every year, and public holidays vary year on year, and leap years alter the number
of days in a year. This presents a problem when comparing different years within the same
financial market. As the trading days shift, a realised volatility measure for a specific day may
not exist within that specific year. Furthermore, to smooth discrete data and create multiple
yearly curves or functions, all the years must have the same number of observations.

To solve this issue, grouping the data into years and aligning the dates was necessary. Algo-
rithm 1 describes the function created to solve this problem. This algorithm groups the daily
realised volatility values into their respective years and aligns the dates. When the algorithm
encounters a day within a specific year without a realised volatility value, it assigns this day a
missing (NA) value. This results in a data frame with a day-month column and yearly columns
ranging from 2000 - 2021 containing the daily realised volatility. These yearly columns all con-
tain an equal number of observations (days within the year). This data alignment was applied
across all six market-specific data sets.

There were two pre-processing steps applied to the infectious disease data set, as follows: (i)
Extracting Date Range of Interest: The raw EMVID data set contains data from 01 January
1985 to the present. However, the range of interest is between 04 January 2000 - 31 December
2021. For context, the first ten entries of the raw data set can be observed in Appendix A
Table 10 and is an example of the structure of the raw data. The raw EMVID index data set
was imported to R and saved as a data frame type. A new data frame was created, with the data
between the specified date range. This new data frame also needed to undergo data alignment,
as was the case with the realised volatility data, as the data needs to be in the same yearly
column structure; (ii) Data Alignment: The final data pre-processing step involves aligning
the EMVID index data. This data also needs to undergo alignment and have the daily EMVID
index measure grouped by year. Since the structure of this data set varies from the realised
volatility data set, a minor adaption of that alignment function was done. Algorithm 2 describes
the function created to align the EMVID index data set. The result of this algorithm is a data
frame, with a day-month column and yearly columns ranging from 2000 - 2021 containing the
daily infectious EMVID index measure. This alignment was only applied once as the data set
is utilised across all six markets.

2.2.2 The Smoothing Process

The next necessary step in FDA analysis the smoothing process to convert discrete observations
to functions or curves. Two stages are required when going from discrete data to smooth curves
or functions: First, a set of basis functions ϕk that are mathematically independent of each other
must be created; and second, a smoothing method must be chosen to create a linear combination
or weighted sum of these K basis functions, which best estimate a curve x from the discrete
observations.

The B-spline basis system was chosen over the Fourier system for many reasons, however,
the key reason was due to the periodicity of the underlying data sets. It was assumed that the
realised volatility and EMVID index underlying data were not periodic. Considering the fact
that B-splines accommodate non-periodic data, whereas the Fourier does not, it was a simple
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choice. Additionally, B-splines are known to be superior computationally and have greater
flexibility compared to other basis systems [Ramsay and Silverman, 2005]. As a reminder, a
spline function S(t) can be described mathematically by,

S(t) =
m+L−1∑

k=1
ckBk(t, τ) (3)

where the number of basis functions is K = m + L − 1 since all the supports for the B-
spline functions start at the left boundary [Ramsay and Silverman, 2005] with the assumption
that all interior knots are discrete, the parameter Bk(t, τ) is the value of the B-spline basis
function at time t with the knot sequence τ . Therefore, a B-spline function is determined by
two parameters: the knot sequence τ (as this will infer the number of interior knots L) and
the order m of the polynomials. The subsequent sections will expand on the choice of knot
sequence τ and order m of the polynomials.

For this study, the roughness penalty smoothing method was chosen. According to Ramsay
and Silverman [2005] the roughness penalty method is superior. This superiority is apparent
since the least squares estimation method does not support derivative analysis and has little con-
trol over the amount of smoothing applied. The roughness penalty method avoids these limita-
tions and often produces better results regarding smoothing and derivative estimation [Ramsay
and Silverman, 2005]. Nonetheless, the most important parameter concerning the roughness
penalty method is the smoothing parameter λ. It controls the trade-off between fitting the data
and the variability of the function (fitting versus smoothing) [Ramsay and Silverman, 2002,
2005]. The smoothing parameter λ must be chosen such that penalised smoothing results in
a good balance between overfitting and over-smoothing, which is a complex task [Kokoszka
and Reimherr, 2018]. It is common to choose this parameter through visual inspection, how-
ever, the generalised cross-validation (GCV) criterion is the preferable method. This automatic
method, on average, yields a smoothing parameter λ that is exceptionally close to the optimal
value [Ramsay and Silverman, 2005].

In summary, it was vital to develop a dynamic smoothing (DS) algorithm with regards to
the polynomial order m and smoothing parameter λ, as this allowed for the option of op-
timised smoothing as well as providing a foundation for multiple types of FDA techniques.
This flexibility and reusability are vital when multiple analyses, such as derivative analysis and
functional regression, are carried out on multiple data sets. This point is an elegant segue to
Sub-subsection 2.2.3, which deals with the practical implementation of the dynamic smoothing
algorithm.

2.2.3 The Dynamic Smoothing Algorithm

The fda package in R was used extensively throughout this research Ramsay et al. [2022]. The
goal of the DS algorithm was to ensure flexibility, reusability, repeatability, and the opportunity
to optimise smoothing with regards to the smoothing parameter λ. Therefore, this algorithm
was built to take three parameter arguments, namely, the data to be smoothed, the order of the
B-spline polynomials m and the smoothing parameter, λ.

Some key functions used to develop the dynamic smoothing algorithm are summarised in
Table 1. For further documentation on each function, such as function arguments and outputs,
see Ramsay et al. [2022].

– Please include Table 1 about here. –
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Three parameters determine the DS namely the knot sequence τ (this will infer the number
of interior knots L), the order m of the polynomials, and the value for the smoothing parameter
λ. Algorithm 3 describes the dynamic B-spline smoothing function developed. The algorithm
takes three arguments, the data to be smoothed, the order m of the polynomials and the smooth-
ing parameter λ. Thus, two of the three parameters, except for knot sequence τ , that determine
the smoothing are dynamic and are chosen based on the specific purpose of the smoothing, such
as derivative analysis or functional regression, for example. The choice of knot sequence τ will
infer the number of interior knots L and the number of basis functions K within the B-spline
basis system since K = m + L − 1 when the B-spline functions start at the left boundary.
However, in most applications, a knot will exist at every breakpoint except for the beginning
and end of the interval range [Ramsay et al., 2009]. This ensures that the adjoining polynomials
have derivatives that match at the point where they join. Thus, the number of basis functions
becomes K = m + L − 2 when implemented practically. For this research, it was decided to
place a breakpoint at each argument value. This knot sequence, τ , ensures that the smoothing of
regions with high and low curvature will be catered for across all markets and years of interest.

3 Empirical Methods
In this section, we describe in great detail the econometric approaches undertaken for our anal-
yses.

3.1 Derivative Analysis
A derivative analysis is a key contribution of this research. Thus, the smoothing algorithm
had to accommodate the calculation of the derivatives of the smooth functions. The roughness
penalty method involves penalising the curvature of the highest-order derivative required in the
analysis. A final, but important note on the dynamic smoothing algorithm, is the handling of
missing values within the data. The smooth.basis function in the fda package does not sup-
port the smoothing of data containing missing values. Algorithm 3 incorporates specific logic
to deal with these missing values by excluding these arguments from the smoothing process.

We summarises the practical methods utilised to conduct derivative (rate of change) analyses
on the realised volatility data set. Smooth curves of the realised volatility were generated using
the dynamic smoothing algorithm developed in Sub-subsection 2.2.2. However, for the various
analyses, the order m of the B-spline polynomials and the value of the smoothing parameter
λ needed to be chosen. A smooth curve implies that derivatives exist and can be computed
within the specified time interval of the observations [Mangisa et al., 2019]. The first derivative
(velocity) and second derivative (acceleration) of these smooth curves are of particular interest
as they are indicative of the rates of change. It has been mentioned before that conducting
a derivative analysis requires smooth functions to have derivatives that exist and are smooth.
This is important, as the choice of order of the polynomials m when smoothing the data will
determine if the derivatives are smooth.

To ensure the highest order derivative n to be analysed is smooth, the derivative of order
n + 2 must be penalised in the roughness penalty approach [Ramsay and Silverman, 2005]. In
this case, the highest order of derivative of interest is the second derivative. Thus, the original
function’s fourth derivative (2 + 2 = 4) must be penalised to ensure the second derivative is
smooth. Furthermore, the order of a B-spline basis must be at least two higher than the highest
derivative to be penalised. Therefore, for all derivative analyses conducted in this research,
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an order six (m = 6) B-spline system was used in the smoothing process. In the case of
the roughness penalty approach, the smoothing parameter λ controls the smoothness of the
function. The trade-off between smoothness and fit is controlled by the smoothing parameter
λ. The challenge lies in finding an optimal smoothing parameter that suits the data. For the
case of the general estimation curves, the choice of smoothing parameter λ was made using the
GCV criterion. The GCV criterion yields a smoothing parameter λ that is exceptionally close
to the optimal value [Ramsay and Silverman, 2005].

– Please include Figure 1 about here. –

Figure 1 is a plot of the GCV criterion using a six-order B-spline basis system (m = 6) over
a range of smoothing parameter λ values. The GCV criterion plot indicates that the optimal
smoothing parameter λ value, across all six markets, is when λ = 104, as this is where the GCV
is at a minimum. Therefore, the realised volatility data for the general derivative estimation case
was smoothed using the dynamic smoothing algorithm with a sixth-order B-spline basis system
(m = 6) and a smoothing parameter λ = 104 for all six markets.

The realised volatility data was smoothed using the DS algorithm (Algorithm 3), which
returns a smooth functional data object. The fda package contains the function deriv.fd,
which takes a smooth functional data object as an argument as well as the order of derivative
required, and returns the derivative of the functional data object.

3.1.1 Phase-Plane Plot Analysis

A phase-plane plot is a plot of the first derivative (velocity) against the second derivative (accel-
eration) of a particular smooth function. Phase-plane plot analysis provides completely differ-
ent insights due to the nature of plotting one order of derivative versus the other, and are useful
as they illustrate the exchange of energy (potential versus kinetic) within a system, and many
insights into a particular system can be derived from such plots. A phase-plane plot’s X-axis
range (width) and Y-axis range (height) relate to the amount of kinetic and potential energy,
respectively. From an economics perspective, kinetic energy corresponds to the manufactur-
ing and shipping of commodities (economic movement), and potential energy corresponds to
the amount of capital, resources, and material available to bring about economical movement
[Ramsay and Silverman, 2005]. This concept can be extended to international financial market
volatilities. Therefore, concerning the market volatility phase-plane plots, the extraction of the
amount of kinetic energy (X-axis range) and potential energy (Y-axis range) has the potential
to expound valuable market insights.

3.1.1.1 Choice of Smoothing Parameters

In theory, the smoothing parameters for the phase-plane plot analysis could be identical to the
general derivative estimation parameters. This does hold true for the order of the B-spline
basis but not for the value of the smoothing parameter. The B-spline basis order remains at
six (m = 6) due to the reasons mentioned earlier. Conversely, a smoothing parameter of 104

produced indecipherable phase-plane plots due to under-smoothing. The data is not smooth
"enough", so the derivatives vary in extremes, producing an indecipherable phase-plane plot.
Theory suggests that, in the phase-plane plot case, instead, make the final choice of smoothing
parameter λ by visual inspection [Ramsay and Silverman, 2005]. The most common technique
employed when generating phase-plane plots is to start with a small value for the smoothing
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parameter λ and increase it until the plots become stable, even at the cost of sacrificing a higher
level of fit [Ramsay and Silverman, 2002]. Employing the technique mentioned above, it was
found that a smoothing parameter of λ = 108 was sufficient to produce stable phase-plane
plots. In summary, the smoothing parameters used to smooth the realised volatility data in the
phase-plane plot case were a B-spline basis of order six (m = 6) and a smoothing parameter of
λ = 108.

3.1.1.2 Generating a Phase-Plane Plot

Once the realised volatility data was smoothed using the DS algorithm, the result was a smooth
functional data object which was passed as an argument to the phaseplanePlot function
within the fda package. This generated phase-plane plot for each year pertaining to a specific
market. Extracting the X and Y axes ranges from a phase-plane plot dynamically is no trivial
task. The algorithm developed has to be dynamic to find the correct range for all plots between
the years 2000 to 2021, across all six international financial markets. Figure 2 is a straight-
forward example of a phase-plane plot since most phase-plane plots have a spiralling irregular
shape. However, Figure 2 will suffice for an explanation.

– Please include Figure 2 about here. –

By observing Figure 2, the X-axis range is defined as the difference between point B and
point D. Similarly, the Y-axis range is defined as the difference between point A and point C.
These points mentioned above may be extracted by leveraging the knowledge that a phase-
plane plot is simply the second derivative plotted against the first derivative. It is clear that
point A and point C exist where the first derivative (velocity) is zero. Likewise, point B and
point D exist where the second derivative (acceleration) is zero. The flaw in this approach is
that the matrix returned by this plot contains a set of discrete values at which the functional
data object was evaluated. Therefore one cannot test for values at precisely zero. To avoid
this issue, testing for a change in the sign (positive to negative or negative to positive) of the
respective derivative provides the index at which the points exist. Algorithm 4 was developed
to execute the process of extracting the X and Y spans over the years and for all the countries
of interest. This functional data object is identical to the one utilised to create the phase-plane
plots. Therefore, the smoothing parameters are identical, and the B-spline order remains at
m = 6 and the smoothing parameter at λ = 108 for this specific analysis.

3.2 Functional Regression
We next summarises the practical methods implemented to conduct functional regression anal-
yses on the realised volatility data set, using the daily newspaper-based infectious disease index
as a predictor. The functional regression model implementation involves few steps: The choice
of functional regression model, smoothing of the relevant data sets, regression smoothing pa-
rameters, essential fda functions and the functional regression algorithm are all necessary to
produce a functional regression model. The variable of interest (response variable) in this
study is the realised volatility of the specific international financial markets. This data has been
smoothed in the previous analyses, thus, it has the property of being functional. Therefore,
the type of model to be implemented is a functional response regression model. The EMVID
index is the explanatory (predictor) variable here and had the property of being scalar as it
contains daily EMVID index values over the 22 years of interest. The response variable is
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functional, and the explanatory variable is scalar. The type of regression model most appro-
priate in this case is function-on-scalar regression. However, to conduct regression on the 22
realised volatility curves, only 22 EMVID index data points could be used within the regres-
sion model. Aggregating data, such as taking the mean for each year, is not desirable as it
could result in information loss (see Das et al. [2019]). However, all the daily EMVID index
data points could be utilised in the regression if the EMVID index data is also smoothed to
produce yearly curves. In this case, both variables are functional, and the type of regression
model most appropriate is function-on-function regression.

Function-on-function regression has the following mathematical notation,

yi(t) = β0(t) +
q−1∑
j=1

xij(t)βj(t) + ϵi(t) (4)

where yi(t) are realised volatility curves for years i = 2000, 2001, . . . , 2021. The functional
explanatory variable xij(t) is the EMVID index curves over the same yearly i period.

3.2.1 Smoothing the Infectious Disease Index

The EMVID index data was smoothed using the dynamic smoothing algorithm developed. A
sixth-order B-spline basis system (m = 6) was chosen to be consistent across analyses. The
smoothing parameter was once again chosen by using the GCV criterion. The GCV criterion
for the EMVID index over a range of smoothing parameter values λ is given in Figure 3.

– Please include Figure 3 about here. –

By observing Figure 3, it is clear that the smoothing parameter λ that minimises the GCV
criterion is λ = 106. Thus, the EMVID index was smoothed using a sixth-order B-spline basis
system (m = 6) with a smoothing parameter of λ = 106.

3.2.2 Choice of Functional Regression Smoothing Parameters

The choice of smoothing parameters for functional regression is twofold. It involves choosing
smoothing parameters for the actual response variable yi(t) and the predicted response variable
ŷi(t). The general estimation analyses smoothed the realised volatility data using a sixth order
B-spline (m = 6) and a smoothing parameter to the value of λ = 104 for all six markets.
The EMVID index data was smoothed using a sixth-order B-spline (m = 6) and a smoothing
parameter to the value of λ = 106 for all six markets. For this specific regression case, the
derivative of the regression curves is not of interest. Thus, the order of the B-spline does not
need to be as high as a sixth order. The question of accuracy between different B-spline basis
system orders arises. The regression curves should exhibit the highest amount of accuracy
possible. De Boor [2001] and Ramsay and Silverman [2005] both suggest that a fourth-order
B-spline (m = 4) with knots at each argument smooths the data with the best accuracy. An
experiment was created to test this claim. The realised volatility data for each market was
smoothed using a range of B-spline orders (m = 4, m = 5, m = 6) over a range of smoothing
parameter values (λ = 10−3 to λ = 104 in increments of 101). A sample of 5% from each year
was extracted, and the root mean square error (RMSE) metric was calculated. This was done
over 25 trials. The results for each market can be seen in Figures 23 - 28 in Appendix E. These
results reveal that the claim is partially correct. At low values of λ, the fourth order B-spline
(m = 4) does have a lower RMSE value. However, as the smoothing parameter λ increases,
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the claim does not hold, and the RMSE values are extremely similar across the three orders of
B-splines. Due to this fact, and to be consistent across analyses, the B-spline order remains at
six (m = 6) for the regression analysis.

The realised volatility response curves yi, across each market, were smoothed using a sixth
order B-spline (m = 6) and a smoothing parameter of λ = 104 as per Figure 1 and consis-
tent with the general derivative estimation analysis case. The smoothing parameters for the
explanatory variable can be found in Sub-subsection 3.2.1. Both of these functional variables
are used within the functional regression model. The output of the functional regression model
must also be smooth curves. The smoothing parameters for the predicted curves ŷi (the result
of the regression analysis) need to be chosen. The B-spline order was kept at six (m = 6),
however, the smoothing parameter value was chosen based on the cross-validated integrated
squared error (CVISE) score. The smoothing parameter λ, which minimises the CVISE score,
is the optimal choice of smoothing parameter for regression analysis. Figure 4 is a plot of
the CVISE score using a six-order B-spline basis system (m = 6) over a range of smoothing
parameter λ values.

– Please include Figure 4 about here. –

The CVISE plot does not show a notable decrease in the CVISE score for a particular
smoothing parameter value. Thus, the smoothing parameter was chosen to be λ = 104 con-
sistent with the response variable. In summary, the smoothing parameters for both the actual
yi and predicted ŷi response curves were chosen to be m = 6 and λ = 104 for the regression
analysis.

3.2.2.1 Important fda Functions

Some key functions used to develop the dynamic function-on-function regression algorithm are
summarised in Table 2. For further documentation on each function, such as function arguments
and outputs, see Ramsay et al. [2022].

– Please include Table 2 about here. –

3.2.2.2 Dynamic Function-On-Function Regression Function

A dynamic function-on-function regression algorithm was developed to carry out the regression
analysis. Algorithm 5 produces a fitted regression model for the realised volatility of an inter-
national market using the EMVID index as the predictor variable. The algorithm is dynamic
because it supports different international market volatility data and the smoothing parameters
are variable. Algorithm 5 utilises the dynamic B-spline smoothing function developed in Al-
gorithm 3 to smooth the realised volatility and EMVID index data. The EMVID index data
contains values for dates that may not exist in the realised volatility data due to the aforemen-
tioned trading days issue. Thus, logic was incorporated to compare the market-specific realised
volatility data set and the EMVID index data set to ensure both data sets have the same number
of observations.
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4 Empirical Findings
In this section, we start off with exploratory analysis of our data, before proceeding to our main
results.

4.1 Exploratory Data Analysis
An initial exploratory data analysis was conducted on the realised volatility and infectious
diseases index data sets. Figures 5 and 6 show the daily realised volatility (%) during the
years 2000 - 2021, for the emerging and developed markets, respectively. From Figure 5, it is
clear that two or three notable periods experienced excessively high realised volatility values
across the three emerging markets. For Brazil and India, these notable periods correspond
to the years 2008/9 (Global Financial Crisis) and 2020 (COVID-19 pandemic). India also
experienced a notable increase in daily realised volatility in 2004 due to the UBS Securities
scandal. China experienced high daily realised volatility values during the Global Financial
Crisis (GFC). However, it did not show this during the COVID-19 pandemic year. The second
notable period increase in volatility for the Chinese market was during the 2015/16 period
when the Chinese stock market crashed. The maximum daily realised volatility during the
COVID-pandemic was less than the maximum daily realised volatility during the GFC.

Figure 6 shows similar findings for the developed markets. The Eurozone area, the United
Kingdom (UK) and the United States (US) show three notable increases in daily realised volatil-
ity over the 2000− 2021 time period. All three markets experienced increases during the years
2008/9 (Global Financial Crisis), 2015/16 (the Chinese stock market turbulence, the UK Euro-
pean Union membership referendum, and the H1N1 and Ebola epidemics) and 2020 (COVID-
19 pandemic). The developed markets all indicate that the GFC period had the highest daily
realised volatility, similar to the emerging markets.

– Please include Figures 5 and 6 about here. –

4.1.1 Realised Volatility Box Plots

Figures 7 and 8 show box plots of the daily realised volatility (%), for each year during the
2000 - 2021 period, for the emerging and developed markets, respectively. These figures illus-
trate more comprehensive insights, into some basic statistics of the daily realised volatility, for
each year. A blue cross depicts the mean for each year on the box plot. Across emerging and
developed markets, the mean realised volatility is often the highest during the 2009/9 years,
corresponding to the GFC. This is in accordance with the trend seen in the time series plots.
This suggests that, during the GFC, the increase in realised volatility was sustained for an ex-
tended period. Most notably, the mean for the COVID-19 pandemic (2020) across the markets
was not significantly higher than in other years. This is not in accordance with the trend seen
in the time series plots. In summary, during the COVID-19 pandemic, there were days with
extremely high realised volatilities but the mean for the entire year was not substantial. This
indicates that the increase in market volatility during the pandemic was relatively short-term.

– Please include Figures 7 and 8 about here. –
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4.2 EMVID Index Data
Figure 9 is a time series plot of the daily newspaper-based equity market volatility due to the
infectious diseases (EMVID) index during the 2000 - 2021 time period. There was a moderate
spike in the EMVID index in 2009, which corresponds to the H1N1 (Swine Flu) pandemic.
Furthermore, the EMVID index saw a minor increase in 2015 because of the Ebola or Zika
virus epidemics. The EMVID index reached an all-time high in 2020 due to the COVID-19
pandemic. The EMVID index values during this period are unparalleled and, comparatively,
reduce the previous spikes to minor status. Since this index is based on market volatility due
to infectious diseases, it is clear that COVID-19 substantially affected market volatility. This
supports Baker et al. [2020a]’s claim that COVID-19 affected market volatilities on an unprece-
dented scale.

– Please include Figure 9 about here. –

4.3 Main Results
We present the results from the various functional data analysis techniques described earlier:
general derivative curves, the phase-plane plot analysis, and the functional regression exercise
results.

4.3.1 General Derivative Estimation

Derivatives were obtained after the realised volatility data had been smoothed using a B-spline
basis system of order six (m = 6) and a smoothing parameter λ = 104 for all six markets.
Important insights can be extracted from the derivative curves since they depict the rates at
which the realised volatility (risk) changes. The results are centred around the COVID-19
period, as the focus of this research is COVID-19. However, the derivative results for the GFC
period have also been included for comparison purposes. All curves were generated from the
same realised volatility data set over the same period and are shown on the same scale. The
derivative curves for the COVID-19 period can be found in Sub-subsubsection 4.3.1.1, the GFC
period in Sub-subsection 4.3.1.2 and a comparison between the two in Sub-subsection 4.3.1.3.

4.3.1.1 Derivative Analysis: The COVID-19 Period

Figures 10 and 11 are the first and second derivative curves for the COVID-19 period, respec-
tively. The year 2020 (the black curve) was when the COVID-19 pandemic was at its peak.
These figures also include the derivative curves for the pre-COVID-19 years, 2018 as the green
curve and 2019 as the blue curve, and the post-COVID-19 year 2021 as the red curve. COVID-
19 was still a part of everyday life in 2021, however, it was not as significant and was therefore
labelled as the post-COVID-19 year. The derivative curves for three emerging markets (Brazil,
China and India) are on the left, and the three developed markets (the Eurozone, UK and US)
are on the right of Figures 10 and 11.

From Figure 10 it is evident that the rate of change (velocity) of the realised volatility or
risk did not fluctuate excessively in the years before the COVID-19 pandemic. This holds true
across emerging and developed markets. However, when COVID-19 appeared, the realised
volatility rate of change experienced a sharp increase. This fact is true for all the markets
except for China. The sharp increase in the rate of change of risk occurred around March 2020,
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the month when COVID-19 was declared a global pandemic. China did not experience as sharp
a spike, however, the change in realised volatility did increase from January to March of 2020,
just not on the same scale as the other markets. The change in volatility profiles (magnitude and
shape) for Brazil, India, the Eurozone, the United Kingdom and the US during the COVID-19
period are incredibly similar. The sudden fluctuation in the rate of change of realised volatility
was short-lived and did not persist beyond May 2020. Post COVID-19, during the 2021 year
(the red curve in Figure 10), the change in realised volatility remained relatively stable across
all markets. Only Brazil, the Eurozone and the UK showed minor fluctuations. Thus, the
extreme changes in volatility were limited to March, April and May of 2020 and did not persist
for an extended period.

Figure 11 are the second derivative (acceleration) curves of the realised volatility for the
COVID-19 period. These curves depict the rate of change of the rate of change of the realised
volatility or risk. The conclusions drawn from Figure 11 are identical to those in Figure 10. This
figure does highlight Brazil as the market which experienced the most significant acceleration
of realised volatility.

– Please include Figures 10 and 11 about here. –

4.3.1.2 Derivative Analysis: The Global Financial Crisis Period

Figures 12 and 13 are the first and second derivative curves for the GFC period, respectively.
There was no specific date when the GFC started. However, it is synonymous with the collapse
of the Lehman Brothers in 2008. The figures contain derivative curves for the two years prior,
2006 and 2007, and one year post 2009. The derivative curves for three emerging markets
(Brazil, China and India) are on the left, and the three developed markets (the Eurozone, UK
and US) are on the right of Figures 12 and 13.

Figure 12 indicates that during 2006 (the green curves), the rate of change of realised volatil-
ity was relatively stable throughout the year for most of the markets. China and India were
the exceptions, both experienced fluctuations in the velocity of realised volatility in May, 2006.
During 2007, the emerging markets on the left of Figure 12 experienced significant movement
in their respective realised volatility velocities. The developed markets on the right of Figure 12
did not follow this trend. When the GFC started to gain momentum in 2008, none of the six
markets escaped its effect. Both the emerging and developed markets saw an increase in the
rate of change of realised volatility. These fluctuations in risk persisted for the majority of
2008, unlike the short-lived effect COVID-19 had on the markets. At the beginning of 2008,
all markets experienced an increase in the change in realised volatility, with India having the
most notable shift. The three emerging markets have similar profiles, with a small spike at the
beginning of the year and large spikes in velocities starting in September of 2008, which coin-
cides with the collapse of the Lehman Brothers. The developed markets seemed to experience
greater shifts in the change of realised volatility than the emerging markets. During 2009, all
six markets experienced minor fluctuations throughout the year, however, not on the scale of
2008.

Figure 13 are the second derivative (acceleration) curves of the realised volatility for the
COVID-19 period. These curves depict the rate of change of the rate of change of the realised
volatility or risk. The conclusions drawn from Figure 13 are identical to those in Figure 12.

– Please include Figures 12 and 13 about here. –
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4.3.1.3 Derivative Analysis: Crisis Comparison

Figures 14 and 15 are the first and second derivative curves for the COVID-19 (2020) and GFC
(2008) years, respectively. Again, the derivative curves for the three emerging markets (Brazil,
China and India) are on the left, and the three developed markets (the Eurozone, UK and US)
are on the right of Figures 14 and 15.

Figures 14 and 15 allow for a direct comparison between the two crises. The conclusion taken
away from these two figures is that the risk instability caused by the GFC persisted for much
longer than the instability caused by the COVID-19 pandemic. The COVID-19 pandemic saw
a sudden change in the realised volatility around March 2020 but proceeded to stabilise towards
the end of May 2020.

– Please include Figures 14 and 15 about here. –

4.3.2 Phase-Plane Plots

The phase-plane plots used in this application were aimed to study the energy within the six
international financial markets. The concept is derived from physics principles. Energy can
exist within one of two states, kinetic energy and potential energy. Kinetic energy is associ-
ated with velocity (first derivative) and potential energy with acceleration (second derivative).
Phase-plane plots are created by plotting the velocity on the X-axis and acceleration on the Y-
axis. Kinetic energy is synonymous with work being done, in this application, it is movement
within the market. Potential energy is synonymous with the outstanding capacity for work, in
the market context, it is the availability of capital or resources to be invested in the financial
market. The phase-plane plots in this section were generated using the process described in
Sub-subsection 3.1.1. The phase-plane plots for three emerging markets (Brazil, China and
India) are on the left, and the three developed markets (the Eurozone, UK and US) are on the
right in this section’s figures.

4.3.2.1 Phase-Plane Plots for the COVID-19 Period

Figure 16 contains the phase-plane plots of all six markets for 2020, the COVID-19 period. All
plots have the same scale in order to compare them fairly 2. Both the emerging and developed
markets have remarkably similar phase-plane plot profiles, except for China. The five similar
markets will be discussed first, followed by a separate discussion for China.

Starting from January, the small "j", a large cycle begins and progresses until May. This
cycle has a large radius, indicating a large amount of energy transfer within the event. A large
amount of kinetic energy from January to May of 2020 indicates that these markets experienced
significant movement in the daily realised volatility. The velocity of the realised volatility
reached its largest value just before March. This coincided with the peak of the COVID-19
pandemic when risk and uncertainty were at their highest. After May, the cycle capitulates and
becomes exceptionally compressed. This indicates there was low potential and kinetic energy
within the system. There was little capacity for trading (investors did not want to invest in the
market), and the markets saw much less movement in the daily realised volatility from May
to December. This phase represents the recovery period after the initial shock on the market

2This is the reason for some of the phase-plane plots being extremely small. Due to the scaling, it was impos-
sible to elegantly represent the phase-plane plots for all six markets across multiple years on one figure.
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volatilities due to COVID-19. All five market centres exist around zero, indicating neither a net
positive nor negative velocity or acceleration. The emerging and developed markets exhibited
very similar behaviour during the COVID-19 pandemic.

The phase-plane plot for China in 2020 exhibits a compact profile with reduced seasonal
variability and looks similar to those during periods of war (see Ramsay and Silverman [2002]
for further details). Starting from January, a cycle begins and terminates in June. This cycle
is much smaller in comparison with the other five markets. It does indicate that the Chinese
financial market saw a minor increase in the movement of daily realised volatility but not on a
similar scale to the other markets. The compact profile of the phase-plane plot indicates little
variability in the kinetic and potential energy within the system. Thus, the Chinese financial
market has little capacity for trading but also saw less movement in the daily realised volatility.
The fluctuations in uncertainty or risk were much lower for the Chinese market.

– Please include Figure 16 about here. –

4.3.2.2 Phase-Plane Plots for the Global Financial Crisis Period

Figure 17 contains the phase-plane plots of all six markets for 2008, the GFC period. Brazil, the
Eurozone, the UK and the US have similar phase-plane plot profiles during this crisis. China
and India differ slightly due to the shape of the dominant cycle. In January, all six markets start
with a high velocity (large change in the daily realised volatility), but this velocity decreases
rapidly as February approaches.

The phase-plane plots for Brazil, the Eurozone, the UK and the US depict a compressed
cycle from February until August. This indicates that there was little capacity for trading in the
markets. Investors did not have the capital or were not looking to invest in the market. This
explains the low kinetic energy, as the market was experiencing minimal movement in the daily
realised volatility. From September through to November, a large cycle appears. The kinetic
energy increased, which implies a large shift in daily realised volatility occurred. The large
shift in daily realised volatility or uncertainty was due to the collapse of the Lehman Brothers
investment bank and the magnifying of the GFC. The collapse of the Lehman Brothers occurred
in mid-September, which corresponds to the time at which the velocity of realised volatility was
at its peak.

India also saw a notable cycle starting in September and continuing until November. This
cycle was not as great in magnitude as the corresponding cycle for Brazil, the Eurozone, the
UK and the US. China has a similar phase-plane plot profile to the one in COVID-19. The
plot is exceptionally compressed and has little change in potential or kinetic energy. The low
variation in the movement for the daily realised volatility indicates that the uncertainty in the
Chinese market changes gradually and with a small magnitude. The most notable cycle occurs
in March and April.

– Please include Figure 17 about here. –
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4.3.2.3 A Comparison Between the Global Financial Crisis and COVID-19 Periods

Figures 18 and 19 contain the phase-plane plots, comparing the GFC (2008) and COVID-19
(2020) periods for the emerging and developed markets, respectively. The previous sections
discuss the dynamics of each period individually, however, the comparison allows for insights
into the difference in magnitudes of energy transfer within the system. Observing Figure 18,
it is clear to see that for Brazil and India, the potential and kinetic energy exchange in 2020
is greater than in 2008. For China, the opposite of this holds true. The large cycles also do
not occur in the same months, which is expected, as each crisis occurs in its own time frame.
Figure 19 depicts a similar trend for the developed markets. The potential and kinetic en-
ergy exchange during 2020 was greater than 2008. This indicates, for both the emerging and
developed markets, that the rate of change (not the magnitude) in realised volatility during
COVID-19 was greater than during the GFC. Therefore, the uncertainty surrounding the finan-
cial markets during the COVID-19 period increased and subsided rapidly. In comparison, the
uncertainty surrounding the GFC came about at a slower rate.

– Please include Figures 18 and 19 about here. –

4.3.2.4 Kinetic and Potential Energy Extraction

The difference between the maximum and minimum velocity value (X-axis range) on a phase-
plane plot is a quantitative measure representing the amount of kinetic energy within the sys-
tem. Likewise, the difference between the maximum and minimum acceleration value (Y-axis
range), on a phase-plane plot is a quantitative measure representing the amount of potential
energy within the system. The total kinetic and potential energy values were extracted from
each phase-plane plot and are summarised in Table 3. The values were extracted for the entire
range of interest, namely from 2000 to 2021, to get a sense of what the values would be both
with and without a financial crisis. The results of the Global Financial Crisis and COVID-19
pandemic years are highlighted in red.

– Please include Table 3 about here. –

In this application, the amount of kinetic energy within the system indicates the extent to
which the velocity of daily realised volatility fluctuated throughout the year. The results in
Table 3 suggest that the amount of kinetic energy experienced during 2008 and 2020 was much
higher than all the other years, indicating some form of financial instability in the markets. It
can also be seen that during the COVID-19 pandemic, the amount of kinetic energy experienced
was greater than the GFC across all six markets. This means that the change in daily volatility
was much faster during COVID-19. The initial shock of COVID-19 had a significant and swift
effect on the realised volatility of both emerging and developed markets. Again, the exception
to this trend is China. The amount of kinetic energy experienced by the Chinese market is
quite similar across the years, crisis or no crisis. The GFC had higher kinetic energy than the
COVID-19 pandemic.

In this application, the amount of potential energy within the system indicates the extent to
which the acceleration of daily realised volatility fluctuated throughout the year. According to
Table 3, the potential energy across the six markets is higher during years that experienced a
financial crisis. The developed markets experienced a higher acceleration in realised volatility
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during the COVID-19 pandemic than the emerging markets. The realised volatility or uncer-
tainty had a higher acceleration during the COVID-19 pandemic than during the GFC. This
supports the aforementioned theory that market uncertainty arose much more quickly during
COVID-19 but did not persist for an extended period.

4.3.3 Functional Regression

A regression analysis was conducted on the realised volatility data. The realised volatility, for
each market from 2000 to 2021, was predicted using a function-on-function regression model.
The daily newspaper-based equity market volatility due to infectious diseases (EMVID) index
was used as the only predictor variable. The regression analysis was carried out for all 22 years,
but the focus is on 2020, the COVID-19 period. It is known that the COVID-19 pandemic
affected the realised volatility in 2020, but the aim is to quantify the relationship between
infectious diseases and market volatility.

4.3.3.1 Correlation Analysis of The Realised Volatility and EMVID Index

Before proceeding with the regression analysis, the correlation coefficient was calculated for
the realised volatility and EMVID index to investigate the relationship between the two vari-
ables. The correlation coefficient was calculated for each year across the six financial markets
and is summarised in Figure 20.

– Please include Figure 20 about here. –

The mean correlation coefficient for each market is shown above each box plot. The mean
correlation coefficient for each market is near zero, indicating that almost no linear relationship
exists between the realised volatility data and the EMVID index data. However, the year 2020
was an outlier for all markets. The 2014 year was also an outlier for Brazil and the US. This
higher correlation could be due to the Ebola epidemic in 2014. In 2020, the correlation between
the realised volatility and the EMVID index is greater than 0.60 for most of the markets. This
indicates a moderately positive linear relationship. The EMVID index is only suitable as a
predictor for realised volatility for the year 2020.

4.3.3.2 Realised Volatility Regression Results

Figure 21 contains the results of the function-on-function regression model, for the COVID-
19 pandemic period (2020), across the six markets. The blue curve depicts the actual realised
volatility, and the red curve depicts the predicted realised volatility. The regression results for
the additional years can be found in Section G of Appendix F.

From Figure 21, it is clear that the EMVID index can be used as a predictor for the daily
realised volatility of international financial markets. The predicted curves (in red) are very
similar to the actual curves (in blue). The results show a substantial spike in daily realised
volatility, due to COVID-19, during March 2020. The Chinese market does not have a similar
profile to the other markets but does show an increase in daily realised volatility as early as
January.

For the years that do not contain any epidemics or pandemics, the regression model performs
poorly, as seen by the results in Section G of Appendix F. This is to be expected, as the index
is a newspaper-based equity market volatility due to infectious diseases index. Inherently,
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only the years that contain infectious disease outbreaks monitored by this index will produce
satisfactory results.

– Please include Figure 21 about here. –

To measure the fit of the regression model, the R-Squared (R2) metric was calculated for each
year across the six markets. This quantitative measure represents the proportion of variance for
the daily realised volatility explained by the EMVID index. Table 4 summarises the R2 metric
for the six markets, with 2020 highlighted in red, as the focus is COVID-19. The regression
model performs exceptionally well for the 2020 year since the R2 value is close to one for all
markets except China. In 2020, Brazil, India, the Eurozone, the UK and the US have R2 values
over 0.92. The EMVID index is a good predictor of realised volatility for this year. This is
expected because of the COVID-19 pandemic. The predicted volatility for the Chinese market
has an R2 value of 0.600, which is still acceptable. All years, apart from 2020, have a much
lower R2 value, which indicates the EMVID index is a poor predictor of realised volatility for
years with no severe health crises.

Although the R2 value can quantify the variation explained by the predictor variable, it can
be misleading when it comes to regression performance. This is evident by observing the
moderate R2 values for the 2008 year. There was no significant disease epidemic during this
year, but the EMVID index can explain some variation in the realised volatility. By looking
at the regression model output for 2008, in Figure 29 of Appendix F, it is evident that the
regression model is performing poorly despite the R2 value. Therefore, the root mean square
error (RMSE) was calculated for each year across all six financial markets and is summarised
in Table 5. This metric is a better measure of performance. The RMSE values for 2008 more
accurately describe what is happening in Figure 29 of Appendix F. The RMSE values for the
COVID-19 period are lower than all the other years, meaning that the regression model predicts
the realised volatility more accurately for this specific year. This is expected due to the nature
of the predictor variable. In summary, the R2 and RMSE metrics indicate that the EMVID
index can be used as a predictor for the realised volatility of international financial markets,
provided that the period of interest experienced a major health crisis.

– Please include Tables 4 and 5 about here. –

Figure 22 is a series of box plots of the daily newspaper-based equity market volatility due to
infectious diseases (EMVID) index for each year during the 2000 - 2021 time period. The 2020
and 2021 years had significantly higher mean EMVID index values than the other years in this
period. The trend seen in Figure 22 corroborates the trend seen in Figure 9. Additionally, it
suggests that the effects of the COVID-19 pandemic potentially spilled over into the following
year.

– Please include Figure 22 about here. –
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5 Conclusions
Having analysed the realised volatility of developed and emerging stock markets using FDA,
with comparisons across the global financial crisis and the COVID-19 episodes, first, we aim
to provide a detailed summary of our econometric findings, before discussing the implications
of our results.

The insights from the general derivative exercise resulted in the following findings: First,
the realised volatility can successfully be modelled using functional data analysis (FDA) tech-
niques. Specifically by using a B-spline basis system and the roughness penalty approach; Sec-
ond, the COVID-19 pandemic was a significant contributor to the instability of the financial
markets in 2020; Third, it is clear from the derivative curves that the velocity of the realised
volatility or risk did not fluctuate excessively in the years before the COVID-19 pandemic.
However, the rate of risk grew rapidly at the beginning of March 2020, when COVID-19 was
officially declared a global pandemic by the World Health Organisation. Post-COVID-19, the
change in realised volatility remained relatively stable across all six markets. Only Brazil, the
Eurozone and the United Kingdom experienced minor fluctuations during 2021. Thus fourth,
this significant effect on the market volatilities was seen for Brazil, India, the Eurozone, the
United Kingdom and the United States. Thus, the similar market volatility profiles across most
of the markets, with China being the exception, indicate that the emerging and developed mar-
kets were affected by the COVID-19 pandemic on a similar scale. Fifth, the recovery time
of the market volatilities was significantly quicker during the COVID-19 pandemic than that
observed during the Global Financial Crisis (GFC). The rate of change of uncertainty returned
to pre-COVID levels in May 2020. Thus, the uncertainty due to COVID-19 only persisted from
March to May 2020 and then proceeded to stabilise. The fluctuations in realised volatility due
to the GFC began as early as 2007 and persisted until early 2009. This finding held across
emerging and developed markets.

The sixth finding of this research is that the phase-plane plot exercise offered additional
findings due to the potential and kinetic energy extraction functions used. This is a significant
contribution since, to the authors’ knowledge, this type of analysis has not been done before.
Additionally, no base function in R existed beforehand to extract these quantities, and in this
research we developed a custom function to achieve this. This type of analysis can be extended
to other applications, such as temperature or weather data, and is not limited to the data in this
specific application. The potential and kinetic energies analysis produced the seventh finding
in the form that the initial shock on the markets due to COVID-19 was substantial and greater
than the initial shock observed due to the 2008 GFC, which while spread more quickly across
the financial markets, did not persist for a prolonged period.

The smoothing trial exercise produced the eighth finding of this research, which is method-
ology specific. De Boor [2001] and Ramsay and Silverman [2005] both suggest that a fourth-
order B-spline (m = 4) with knots at each argument smooths the data with the best accuracy.
The smoothing exercise found this claim accurate but only at smoothing parameter values be-
low λ = 10−1. The difference in accuracy is marginal when using higher B-spline orders if a
smoothing parameter greater than λ = 10−1 is applied.

Finally, to have an explicit understanding of the relationship between the uncertainty in fi-
nancial markets and the COVID-19 pandemic, the daily newspaper-based infectious disease
(EMVID) index was used in a regression exercise. A functional regression model was devel-
oped to predict the realised volatility of international financial markets using the EMVID index
as a predictor. This analysis produced the nineth finding which was that while EMVID index
is an accurate predictor of the realised volatility of financial markets, it is only in the years
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that markets experience a severe health crisis, as 2020 did with the COVID-19 pandemic. An
interpretation of these key findings is discussed in the section below.

Now, we turn our attention to the interpretation of the key findings. The COVID-19 pan-
demic significantly contributed to the financial markets’ instability in 2020. The reason for
this instability is that the COVID-19 pandemic introduced a large amount of uncertainty and
fear among investors, with investors fleeing to low-risk safe haven assets [Corbet et al., 2021].
This uncertainty galvanised the freefall of most of the international financial markets. The
government’s policy responses to curb the spread of the virus also had huge implications on
the markets [Zaremba et al., 2020; David et al., 2021]. During 2020, the risk started to evolve
and increase uncertainty in the markets, which caused dramatic fluctuations in realised volatil-
ity. In 2021, the post-COVID-19 year, the market volatilities were relatively stable because
the financial markets had recovered from the shock of COVID-19. The minor fluctuations in
realised volatility could be due to several factors. However, a possible explanation is that small
outbreaks of COVID-19 occurred. Once again, increasing uncertainty among investors.

The emerging and developed markets, except for China, were affected by the COVID-19
pandemic on a similar scale. Emerging markets tend to follow developed markets, and as the
developed markets were experiencing large increases in realised volatility it spilt over to the
emerging markets. The Chinese financial market was the exception, it did experience an in-
crease in uncertainty over this period, but it was not on the same scale as the rest. This is
surprising since the COVID-19 pandemic began in China. This could be attributed to the fact
that the number of daily COVID-19 cases in China significantly affected the Chinese stock mar-
ket. However, China implemented strict lockdown measures early on, and the daily infection
rate was kept relatively low [Gao et al., 2021]. The low infection rate and proactive approach to
handling the COVID-19 pandemic may have lessened the uncertainty among investors, which
could be why China is not similarly affected.

The recovery time of the market volatilities was significantly quicker during the COVID-19
pandemic than that observed during the GFC. There are many reasons for the faster recovery
of international financial markets during the COVID-19 pandemic such as, but not limited to,
financial policies, technology stocks, the nature of the crisis and the dynamic adaptability of
the stock market. The GFC was an event that exposed the lack of adequate regulatory policy
[Claessens et al., 2010]. Due to this lack of adequate regulatory policy, many vital lessons
were learnt during the GFC that could be applied to the COVID-19 financial crisis. The central
banks discovered that financial policies such as lowering interest rates, quantitative easing,
capital injections into financial institutions and increased government spending (fiscal policy)
[The Reserve Bank of Australia, 2022] have a positive impact during a financial crisis. The
response to a global crisis must be swift, systematic, and decisive [Lin, 2008]. Therefore, when
the COVID-19 pandemic appeared, the central banks were better prepared and knew what to
do. Once the COVID-19 crisis was declared a pandemic, many countries acted swiftly and
introduced economic rescue measures. For example, in May 2020, the US Federal Reserve
reduced interest rates to zero and brought back quantitative easing, which positively affected
the stock market [Gao et al., 2021]. This was seen in the results, as the velocity of realised
volatility started to return to pre-COVID levels at the end of May 2020. Due to the lockdown
measures put in place by governments, society relied heavily on technology for remote work
and entertainment. The technology stocks saw great returns during the COVID-19 period and
may have contributed to this fast recovery of the markets.

When discussing the recovery of financial markets, a fact that cannot be ignored is the nature
of the crisis that caused the instability. The COVID-19 pandemic was a health and humanitarian
crisis that brought about a financial crisis due to the reduced investment in risky assets. The
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entire global population was affected by the pandemic. However, the rich had better resources
to survive the shock than the poor. The rich are primarily the people who invest in the financial
market itself. Conversely, the origin of the GFC was the financial market itself. Thus, the
investors and the rich were directly affected, which is why the recovery took much longer,
along with the absent financial policies. The GFC affected the global financial markets and
split over to many economies creating what is known as the "Great Recession".

Another potential reason for the relatively short-term impact of COVID-19 on the volatilities
of international stock markets is the "dynamic adaptability" of the stock markets [Gao et al.,
2021]. This is a situation whereby a new epidemic arises, and the market reacts strongly.
However, as time passes, the market adapts to the epidemic. The phase-plane analysis supports
this since the potential and kinetic energies during COVID-19 were higher than during the
GFC, but the duration of the crisis was shorter. This suggests that the markets during COVID-
19 experienced an initial but substantial shock, which spread quickly across markets, but the
shock did not last, and the recovery was swift.

We found that the EMVID index can be used as a predictor for the realised volatility only if
the markets experience a severe health crisis, as 2020 did with the COVID-19 pandemic. It is
obvious that only the years that contain infectious disease outbreaks monitored by this index
will produce satisfactory results. Naturally, the regression model performed poorly for the
additional years in the period of interest, which did not contain any epidemics or pandemics.
However, this was expected due to the inherent nature of the predictor variable. The R2 and
RMSE metrics act as a quantitative measure for the relationship between infectious diseases and
financial market volatilities. Additionally, the regression analysis acts as a robustness check and
confirms that the COVID-19 virus increased uncertainty, significantly affecting international
market volatility.

This research aimed to investigate the realised volatility of international financial markets
with a focus on COVID-19. Various FDA techniques were utilised throughout this research,
and in this specific application, can be utilised as an alternative methodology to the conven-
tional time series approach. On an academic level, the research contributes to the knowledge of
basis systems, smoothing methods, derivative analysis and functional regression contributed to
the growing theory on FDA techniques and literature. Furthermore, a significant contribution
of this research is the extraction of the potential and kinetic energy from the phase-plane plot
analysis, which can be applied to other applications and not limited to realised volatility. The
application part of the study was completed using real-world volatility data. Since, volatility is
an indicator of financial risk [Poon and Granger, 2003], the findings in this study can assist in-
dividual investors, policymakers and financial institutions in making informed decisions when
confronted with a fiscal crises due to an infectious disease.
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Figure 1: The GCV criterion for each financial market, with a B-spline system of order six (m = 6),
over a range of smoothing parameter λ values.

Figure 2: A phase-plane plot of the sin(2πt) function.
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Figure 3: The EMVID index GCV criterion, with a B-spline system of order six (m = 6), over a range
of smoothing parameter λ values.

Figure 4: The CVISE score for each financial market, with a B-spline system of order six (m = 6), over
a range of smoothing parameter λ values.
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(a) Brazil

(b) China

(c) India

Figure 5: Time series plots of the daily realised volatility, from 2000− 2021, for the emerging markets.
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(a) The Eurozone

(b) United Kingdom

(c) United States

Figure 6: Time series plots of the daily realised volatility, from 2000− 2021, for the developed markets.
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(a) Brazil

(b) China

(c) India

Figure 7: Box plots of the daily realised volatility, from 2000− 2021, for the emerging markets.
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(a) The Eurozone

(b) United Kingdom

(c) United States

Figure 8: Box plots of the daily realised volatility, from 2000− 2021, for the developed markets.
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Figure 9: The daily EMVID index from 2000− 2021.
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Figure 10: The first derivative of the realised volatility over the COVID-19 period.
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Figure 11: The second derivative of the realised volatility over the COVID-19 period.
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Figure 12: The first derivative of the realised volatility over the GFC period.
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Figure 13: The second derivative of the realised volatility over the GFC period
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Figure 14: The first derivative of the realised volatility over the COVID-19 and GFC periods.
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Figure 15: The second derivative of the realised volatility over the COVID-19 and GFC periods.
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Figure 16: Phase-plane plots of all six markets for the COVID-19 (2020) period.
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Figure 17: Phase-plane plots of all six markets for the GFC (2008) period.
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(a) Brazil

(b) China

(c) India

Figure 18: Phase-plane plots showing a comparison of the GFC (2008) and COVID-19 (2020) period
for the emerging markets. 43



(a) The Eurozone

(b) United Kingdom

(c) United States

Figure 19: Phase-plane plots showing a comparison of the GFC (2008) and COVID-19 (2020) period
for the developed markets. 44



Figure 20: Box plots of the yearly correlation between each market’s realised volatility and the EMVID
index.
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Figure 21: The actual (blue) and predicted (red) daily realised volatility for all six markets during the
COVID-19 period.
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Figure 22: Box plots of the daily EMVID index from 2000− 2021.

Table 1: Key functions used to develop the dynamic smoothing algorithm.

Function Description

create.bspline.basis Create a B-spline basis
int2Lfd Converts an integer to a linear differential operator
fdPar Defines a functional parameter object
smooth.basis Constructs a functional data object by smoothing data using a roughness penalty
fd Defines a functional data object

Table 2: Key functions used to develop the dynamic function-on-function regression algorithm.

Function Description

fd Defines a functional data object
fdPar Defines a functional parameter object
fRegress Carry out various types of functional regression analysis
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Table 3: A summary of the total kinetic energy KEt (X-axis range) and total potential energy PEt (Y-axis
range), extracted from the phase-plane plots, for each market.

Year Country
Emerging Markets Developed Markets

Brazil China India The Eurozone United Kingdom United States
KEt PEt KEt PEt KEt PEt KEt PEt KEt PEt KEt PEt

2000 0.051 0.004 0.084 0.010 0.043 0.003 0.031 0.003 0.030 0.004 0.037 0.002
2001 0.054 0.003 0.057 0.004 0.032 0.003 0.083 0.005 0.063 0.004 0.051 0.005
2002 0.043 0.003 0.051 0.007 0.031 0.002 0.103 0.008 0.085 0.006 0.075 0.005
2003 0.023 0.001 0.049 0.004 0.023 0.002 0.061 0.003 0.037 0.002 0.022 0.001
2004 0.038 0.003 0.050 0.003 0.125 0.008 0.028 0.002 0.017 0.001 0.020 0.001
2005 0.044 0.004 0.024 0.002 0.035 0.004 0.016 0.001 0.016 0.001 0.016 0.001
2006 0.055 0.004 0.071 0.004 0.112 0.005 0.039 0.002 0.041 0.002 0.015 0.001
2007 0.073 0.005 0.050 0.003 0.063 0.005 0.035 0.003 0.043 0.003 0.055 0.004
2008 0.157 0.009 0.082 0.007 0.121 0.012 0.136 0.007 0.153 0.008 0.115 0.006
2009 0.074 0.004 0.058 0.006 0.051 0.005 0.021 0.003 0.023 0.003 0.030 0.001
2010 0.059 0.004 0.045 0.004 0.027 0.002 0.066 0.004 0.057 0.003 0.063 0.004
2011 0.051 0.004 0.018 0.002 0.028 0.003 0.064 0.003 0.055 0.003 0.055 0.003
2012 0.030 0.002 0.028 0.003 0.019 0.002 0.027 0.001 0.025 0.002 0.020 0.002
2013 0.029 0.002 0.031 0.002 0.036 0.002 0.027 0.003 0.025 0.002 0.025 0.003
2014 0.031 0.002 0.059 0.006 0.019 0.002 0.040 0.004 0.034 0.004 0.045 0.005
2015 0.021 0.002 0.108 0.007 0.027 0.002 0.045 0.005 0.045 0.003 0.055 0.003
2016 0.051 0.002 0.024 0.002 0.027 0.003 0.056 0.004 0.061 0.004 0.028 0.002
2017 0.020 0.002 0.017 0.002 0.011 0.002 0.019 0.001 0.011 0.001 0.010 0.001
2018 0.043 0.002 0.035 0.003 0.035 0.002 0.029 0.003 0.026 0.003 0.046 0.003
2019 0.018 0.003 0.037 0.003 0.021 0.001 0.030 0.003 0.023 0.002 0.030 0.002
2020 0.188 0.010 0.048 0.002 0.165 0.009 0.204 0.012 0.215 0.012 0.207 0.011
2021 0.035 0.001 0.032 0.002 0.019 0.002 0.043 0.005 0.033 0.004 0.036 0.004
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Table 4: A summary of the (R2) measure, across all six markets, over the period of interest.

Year Country
Emerging Markets Developed Markets

Brazil China India The
Eurozone

United
Kingdom

United
States

R2

2000 0.350 0.207 0.120 0.053 0.001 0.135
2001 0.193 0.008 0.015 0.254 0.298 0.237
2002 0.127 0.329 0.002 0.186 0.229 0.078
2003 0.478 0.066 0.001 0.013 0.001 0.013
2004 0.157 0.031 0.280 0.086 0.040 0.030
2005 0.396 0.028 0.159 0.197 0.103 0.142
2006 0.041 0.008 0.116 0.001 0.001 0.056
2007 0.490 0.485 0.172 0.065 0.086 0.053
2008 0.489 0.001 0.121 0.309 0.437 0.471
2009 0.389 0.001 0.033 0.017 0.002 0.008
2010 0.179 0.103 0.298 0.001 0.000 0.012
2011 0.271 0.026 0.017 0.166 0.268 0.183
2012 0.028 0.025 0.076 0.000 0.010 0.006
2013 0.085 0.130 0.002 0.002 0.002 0.010
2014 0.328 0.057 0.172 0.204 0.108 0.342
2015 0.208 0.006 0.002 0.052 0.015 0.004
2016 0.272 0.541 0.055 0.024 0.044 0.009
2017 0.231 0.037 0.013 0.003 0.026 0.011
2018 0.086 0.005 0.115 0.052 0.007 0.004
2019 0.002 0.111 0.064 0.052 0.119 0.075
2020 0.921 0.600 0.950 0.947 0.976 0.954
2021 0.365 0.474 0.431 0.005 0.158 0.229
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Table 5: A summary of the RMSE measure across all six markets over the period of interest.

Year Country
Emerging Markets Developed Markets

Brazil China India The
Eurozone

United
Kingdom

United
States

RMSE
2000 0.462 0.606 0.358 0.338 0.380 0.466
2001 0.400 0.477 0.423 0.585 0.412 0.428
2002 0.371 0.396 0.395 1.078 0.745 0.677
2003 0.187 0.362 0.355 0.683 0.430 0.278
2004 0.433 0.268 0.771 0.336 0.347 0.249
2005 0.240 0.322 0.225 0.445 0.427 0.291
2006 0.335 0.444 0.733 0.395 0.340 0.331
2007 0.458 0.921 0.488 0.342 0.303 0.331
2008 1.514 1.133 1.403 1.190 1.412 1.415
2009 0.594 0.529 0.740 0.589 0.658 0.763
2010 0.337 0.282 0.245 0.395 0.340 0.392
2011 0.367 0.256 0.277 0.686 0.534 0.563
2012 0.307 0.326 0.225 0.295 0.278 0.229
2013 0.382 0.262 0.272 0.340 0.306 0.328
2014 0.303 0.547 0.282 0.301 0.334 0.328
2015 0.253 1.074 0.243 0.307 0.298 0.356
2016 0.287 0.531 0.287 0.453 0.426 0.398
2017 0.446 0.572 0.442 0.500 0.407 0.517
2018 0.318 0.361 0.347 0.379 0.310 0.406
2019 0.465 0.431 0.305 0.430 0.284 0.352
2020 0.270 0.216 0.177 0.260 0.206 0.228
2021 0.376 0.234 0.288 0.541 0.468 0.435
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A Algorithms

Algorithm 1: Realised Volatility Data Alignment Function
/* RV data: A market-specific data frame containing the

misaligned daily realised volatility data */
Input: RV data
/* RV dataAligned: A data frame containing the yearly

columns of the daily realised volatility, aligned, so
each year has the same number of days */

Output: RV dataAligned
Function RVdataAlignment(RV data):

/* Add a year column */
year←− format(RV data$Date, "%Y")
RVdata$year←− year
/* Add a month-day column */
monthDay←− format(RV data$Date, "%m-%d")
RVdata$monthDay←− monthDay
/* Create an empty list to store the yearly data */
YearList←− list()
/* Iterate from year 2000 to 2021 */
for (i = 2000; i < 2022; i = i + 1) do

/* Store monthDay and yearly realised volatility
data */

yeari←− subset(RV data, Year == i)
yeari←− subset(yeari, select(monthDay, "realised_volatility")
/* Append this to the list */
YearList←− list(yeari)

end
/* Perform outer join to align days of year, insert NA

where rows have no data */
RVdataAligned←− OuterJoin(Y earList, by = monthDay)
/* Rename columns from 2000 - 2021, except for the

monthDay column */
YearNames←− vector(2000:2021)
for (j = 2; j < ncol(RV dataAligned); j = j + 1) do

names(RV dataAligned)[j]←− Y earNames[j − 1]
end
return RV dataAligned
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Algorithm 2: EMVID Data Alignment Function
/* evmidData: The EMVID data frame for interest */
Input: evmidData
/* evmidDataAligned: A data frame containing the yearly

columns of the daily EMVID index measure, aligned, so
each year has the same number of days */

Output: evmidDataAligned
Function EMVIDdataAlignment(evmidData):

/* Add a month-day column */
monthDay←− format(evmidData$Date, "%m-%d")
evmidData$monthDay←− monthDay
/* Create an empty list to store the yearly data */
YearList←− list()
/* Iterate from year 2000 to 2021 */
for (i = 2000; i < 2022; i = i + 1) do

/* Store monthDay and EMVID index yearly data */
yeari←− subset(evmidData, Year == i)
yeari←− subset(yeari, select(monthDay, "daily_infect_emv_index")
/* Append this to the list */
YearList←− list(yeari)

end
/* Perform outer join to align days of year, insert NA

where rows have no data */
evmidDataAligned←− OuterJoin(Y earList, by = monthDay)
/* Rename columns from 2000 - 2021, except for the

monthDay column */
YearNames←− vector(2000:2021)
for (j = 2; j < ncol(evmidDataAligned); j = j + 1) do

names(evmidDataAligned)[j]←− Y earNames[j − 1]
end
return evmidDataAligned
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Algorithm 3: Dynamic B-spline Smoothing Function
/* alignedDataFrame: The aligned realised volatility or EMVID data

frame (data to be smoothed) */
/* norder: The order of the B-spline */
/* loglambda: The smoothing parameter value */
Input: alignedDataFrame, norder, loglambda
/* fdSmooth: A smooth functional data object */
Output: fdSmooth
Function smooth_data_bspline(alignedDataFrame, norder, loglambda):

/* Drop the MonthDay column */
dropColumnAlignedData←− subset(alignedDataFrame, select = −c(MonthDay))
/* Convert to a matrix */
MyDataMatrix←− as.matrix(dropColumnAlignedData)
/* Define variables to pass into create.bspline.basis */
dataRange←− c(1, dim(MyDataMatrix)[1])
/* Interior knots placed at every argument value (each day in the

year) */
KnotValues←− c(1: dim(MyDataMatrix)[1])
norder←− norder
nbasis←− length(KnotV alues) + norder - 2
fdnames←− list("Days of year", colnames(dropColumnAlignedData))

/* Create the basis object */
basisObj←− create.bspline.basis(rangeval = dataRange, nbasis = nbasis, norder = norder,

breaks = KnotV alues)
/* create the linear differential operator object */
Lfdobj←− int2Lfd(max(0, norder-2))
/* Create the functional parameter object */

fdParobj←− fdPar(fdobj = basisObj, Lfdobj = Lfdobj, lambda = 10(loglambda))
/* Create the coefficients */
numberCol←− dim(MyDataMatrix)[2]
coefs←− matrix(0, nrow = nbasis, ncol = numberCol)

/* Smooth using a roughness penalty and dealing with NA values */
for (i in 1:numberCol) do

curve←−MyDataMatrix[,i]
SmoothCurve←− smooth.basis(argvals = KnotV alues[!is.na(curve)],y =

curve[!is.na(curve)], fdParobj = fdParobj, wtvec = NULL, fdnames = fdnames,
covariates= NULL, method = "chol")

coefs[,i]←− SmoothCurve$fd$coefs

fdSmooth←− fd(coef = coefs, basisobj = basisObj , fdnames = fdnames)
return fdSmooth
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Algorithm 4: The Kinetic and Potential Energy Extraction Function
/* fdSmooth: A smooth functional data object */
Input: fdSmooth
/* XY range: A data frame containing the yearly X-Axis and Y-Axis range */
Output: XY range
Function x_y_range_extraction(fdSmooth):

/* Create an empty x and y range vector to store the values */
xRangeVec←− vector()
yRangeVec←− vector()
/* Define the number of columns (equal to the number of years) */
numberCol←− dim(fdSmooth$coefs)[2]
/* Vector of argument values (days of the year) to evaluate the fd object at */
evalArg←− vector(fdSmooth$basis$rangeval[1]:fdSmooth$basis$rangeval[2])

/* Extract the yearly X & Y range from the phaseplanePlot */
for (i in 1:numberCol) do

/* Create the phaseplanePlot for a specific year */
tempPhasePlanePlot←− phaseplanePlot(evalarg = evalArg, fdobj = fdSmooth[j], returnMatrix = TRUE)
/* Detect sign change of the first derivative */
signChangeXaxis←− diff(sign(tempP haseP laneP lot[, 1]))
/* Find the indices of these sign changes */
XaxisIndices←− which(signChangeXaxis != 0)
/* Extract the second derivative value at those indices */
yVals←− tempP haseP laneP lot[, 2][XaxisIndices]
/* Find the minimum and maximum value */
minYVal←− min(yV als)
maxYVal←− max(yV als)
/* Calculate the Y-Axis range */
yRange←−maxY V al −minY V al
/* Append yRange of that year to the storage vector */
yRangeVec←− vector(yRangeV ec, yRange)

/* Detect sign change of the second derivative */
signChangeYaxis←− diff(sign(tempP haseP laneP lot[, 2]))
/* Find the indices of these sign changes */
YaxisIndices←− which(signChangeY axis != 0)
/* Extract the first derivative value at those indices */
xVals←− tempP haseP laneP lot[, 1][Y axisIndices]
/* Find the minimum and maximum value */
minXVal←− min(xV als)
maxXVal←− max(xV als)
/* Calculate the X-Axis range */
xRange←−maxXV al −minXV al
/* Append xRange of that year to the storage vector */
xRangeVec←− vector(xRangeV ec, xRange)

/* Create the years column */
YearCol←− fdSmooth$fdnames[[2]]
/* Create a data frame with the results */
XYrange←− data.frame(Y earCol, xRangeV ec, yRangeV ec)
return XY range
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Algorithm 5: Dynamic Function-On-Function Regression Function
/* RV alignedDataFrame: The aligned realised volatility data frame

containing the market-specific data */
/* EMV IDalignedDataFrame: The aligned EMVID data frame */
/* norder: The order of the B-spline */
/* loglambdaRV : The realised volatility smoothing parameter value */
/* loglambdaEMV ID: The EMVID smoothing parameter value */
Input: RV alignedDataFrame, EMV IDalignedDataFrame, norder, loglambdaRV ,

loglambdaEMV ID

/* fRegressF it: List containing the functional regression fitted
objects */

Output: fRegressF it
Function function_on_function_regression(RV alignedDataFrame,

EMV IDalignedDataFrame, norder, loglambdaRV , loglambdaEMV ID):

/* Smooth the market-specific realised volatility data */
smoothMarketfd←− smooth_data_bspline(RV alignedDataFrame, norder, loglambdaRV )
/* Remove dates from the EMVID data frame to match RV data frame

*/
equalDateEMVIDdf <- remove_emvid_dates(EMV IDalignedDataFrame,

RV alignedDataFrame)
/* Smooth the EMVID index data */
smoothEMVIDfd←− smooth_data_bspline(EMV IDalignedDataFrame, norder,

loglambdaEMV ID)

/* Create the xfdlist object */
constMap←− rep(1, dim(smoothMarketfd$coef )[2])
emvidList←− list(constMap=constMap, emvidfd=smoothEMV IDfd)

/* Create regression model objects */
beta1←− with(smoothMarketfd, fd(basisobj=basis, fdnames=fdnames))
beta2 <- with(smoothEMV IDfd, fd(basisobj=basis, fdnames=fdnames))
betalist <- list(constMap=fdPar(beta1), emvidfd=fdPar(beta2))

/* Fit the regression model */
fRegressFit←− fRegress(y = smoothMarketfd, xfdlist = emvidList , betalist = betalist)
return fRegressF it

B Realised Volatility Data Set Information
This section contains the metadata for the realised volatility data set used in this research.
Table 6 contains a summary of the econometric measures available within the realised volatility
data set 3. Table 7 contains a summary of the 31 market indices in the realised volatility data
set and their respective date ranges for which data was available at the time of writing 4. These
tables are used as a reference to explain the data-processing steps required in this research.

3These econometric measures were taken verbatim from https://realized.oxford-man.ox.ac.
uk/data and the author does not claim it as his own.

4These market indices and time intervals were taken verbatim from https://realized.oxford-man.
ox.ac.uk/data and the author does not claim it as his own.
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Table 6: A summary of the econometric measures within the realised volatility data set [Heber et al.,
2009].

Column Measure
bv Bipower Variation (5-min)
bv_ss Bipower Variation (5-min Sub-sampled)
close_price Closing (Last) Price
close_time Closing Time
medrv Median Realised Variance (5-min)
nobs Number of Observations
open_price Opening (First) Price
open_time Opening Time
open_to_close Open to Close Return
rk_parzen Realized Kernel Variance (Non-Flat Parzen)
rk_th2 Realized Kernel Variance (Tukey-Hanning(2))
rk_twoscale Realized Kernel Variance (Two-Scale/Bartlett)
rsv Realized Semi-variance (5-min)
rsv_ss Realized Semi-variance (5-min Sub-sampled)
rv10 Realized Variance (10-min)
rv10_ss Realized Variance (10-min Sub-sampled)
rv5 Realised Variance (5-min)
rv5_ss Realized Variance (5-min Sub-sampled)
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Table 7: A summary of the 31 market indices in the realised volatility data set and their respective date
ranges for which data is available [Heber et al., 2009].

Symbol Name Earliest Available Latest Available
.AEX AEX index January 03, 2000 June 28, 2022
.AORD All Ordinaries January 04, 2000 June 28, 2022
.BFX Bell 20 Index January 03, 2000 June 28, 2022
.BSESN S&P BSE Sensex January 03, 2000 June 28, 2022
.BVLG PSI All-Share Index October 15, 2012 March 18, 2022
.BVSP BVSP BOVESPA Index January 03, 2000 June 28, 2022
.DJI Dow Jones Industrial Average January 03, 2000 June 28, 2022
.FCHI CAC 40 January 03, 2000 June 28, 2022
.FTMIB FTSE MIB June 01, 2009 June 28, 2022
.FTSE FTSE 100 January 04, 2000 June 28, 2022
.GDAXI DAX January 03, 2000 June 28, 2022
.GSPTSE S&P/TSX Composite index May 02, 2002 June 28, 2022
.HSI HANG SENG Index January 03, 2000 June 24, 2022
.IBEX IBEX 35 Index January 03, 2000 June 28, 2022
.IXIC Nasdaq 100 January 03, 2000 June 28, 2022
.KS11 Korea Composite Stock Price Index (KOSPI) January 04, 2000 June 28, 2022
.KSE Karachi SE 100 Index January 03, 2000 June 28, 2022
.MXX IPC Mexico January 03, 2000 June 28, 2022
.N225 Nikkei 225 February 02, 2000 June 28, 2022
.NSEI NIFTY 50 January 03, 2000 June 28, 2022
.OMXC20 OMX Copenhagen 20 Index October 03, 2005 June 28, 2022
.OMXHPI OMX Helsinki All Share Index October 03, 2005 June 28, 2022
.OMXSPI OMX Stockholm All Share Index October 03, 2005 June 28, 2022
.OSEAX Oslo Exchange All-share Index September 03, 2001 June 28, 2022
.RUT Russel 2000 January 03, 2000 June 28, 2022
.SMSI Madrid General Index July 04, 2005 June 28, 2022
.SPX S&P 500 Index January 03, 2000 June 28, 2022
.SSEC Shanghai Composite Index January 04, 2000 June 28, 2022
.SSMI Swiss Stock Market Index January 04, 2000 June 28, 2022
.STI Straits Times Index January 03, 2000 June 28, 2022
.STOXX50E EURO STOXX 50 January 03, 2000 June 28, 2022

C Realised Volatility Data Set Structure
The first 10 records from the realised volatility data set are illustrated in Table 8. This table is
used as a reference to explain the data-processing steps required in this research.
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Table 8: The first 10 records of the raw realised volatility data set.

Symbol close_time open_to_close open_time rv10 open_price rk_twoscale bv_ss bv rv5 medrv rk_th2 rv10_ss rsv rv5_ss rk_parzen rsv_ss nobs close_price

2000-01-03 00:00:00+00:00 .AEX 163015 -0.000340 90101 0.000178 675.67 0.000103 0.000100 0.000100 0.000130 0.000050 0.000102 0.000178 0.000046 0.000130 0.000179 0.000046 1795 675.44
2000-01-04 00:00:00+00:00 .AEX 163016 -0.033606 90416 0.000261 664.2 0.000199 0.000207 0.000207 0.000201 0.000075 0.000201 0.000261 0.000147 0.000201 0.000423 0.000147 1785 642.25
2000-01-05 00:00:00+00:00 .AEX 163016 -0.001675 90016 0.000714 633.37 0.000325 0.000361 0.000361 0.000491 0.000166 0.000345 0.000714 0.000328 0.000491 0.000324 0.000328 1801 632.31
2000-01-06 00:00:00+00:00 .AEX 163002 -0.013130 90016 0.000182 632.46 0.000218 0.000258 0.000258 0.000225 0.000152 0.000221 0.000182 0.000116 0.000225 0.000219 0.000116 1799 624.21
2000-01-07 00:00:00+00:00 .AEX 163016 0.025013 90046 0.000157 628.93 0.000126 0.000130 0.000130 0.000138 0.000040 0.000123 0.000157 0.000048 0.000138 0.000155 0.000048 1798 644.86
2000-01-10 00:00:00+00:00 .AEX 163017 0.005081 90146 0.000126 651.82 0.000074 0.000089 0.000089 0.000109 0.000032 0.000073 0.000126 0.000062 0.000109 0.000086 0.000062 1794 655.14
2000-01-11 00:00:00+00:00 .AEX 170656 -0.012511 90033 0.000130 657.11 0.000100 0.000124 0.000124 0.000127 0.000068 0.000103 0.000130 0.000079 0.000127 0.000118 0.000079 1795 648.94
2000-01-12 00:00:00+00:00 .AEX 163015 -0.007366 90101 0.000150 643.12 0.000148 0.000154 0.000154 0.000166 0.000085 0.000150 0.000150 0.000092 0.000166 0.000079 0.000092 1797 638.4
2000-01-13 00:00:00+00:00 .AEX 163017 0.003791 90016 0.000104 639.78 0.000138 0.000129 0.000129 0.000154 0.000033 0.000138 0.000104 0.000051 0.000154 0.000127 0.000051 1801 642.21
2000-01-14 00:00:00+00:00 .AEX 163016 0.012061 90045 0.000071 647.74 0.000104 0.000104 0.000104 0.000097 0.000050 0.000104 0.000071 0.000032 0.000097 0.000103 0.000032 1799 655.6
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D EMVID Index Data Set Information
This section contains the metadata for the EMVID Index data set used in this research. Table 9
is a summary of the columns within the EMVID index data set. This table is used as a reference
to explain the data-processing steps required in this research.

Table 9: A summary of the columns within the EMVID index data set.

Column Measure
day Day of Month
month Month of Year
year The Year
daily_infect_emv_index Daily EMVID Measure

E EMVID Index Data Set Structure
The first 10 records from the EMVID index data set are illustrated in Table 10. This table is
used as a reference to explain the data-processing steps required in this research.

Table 10: The first 10 records of the raw infectious diseases index data set.

day month year daily_infect_emv_index

1 1 1985 0
2 1 1985 0
3 1 1985 0
4 1 1985 0
5 1 1985 0
6 1 1985 7.94
7 1 1985 0
8 1 1985 0
9 1 1985 0
10 1 1985 0

F Smoothing Trial
A smoothing trial exercise was conducted to investigate whether the order of the B-spline basis
system makes a difference in the accuracy of the smoothing process. The realised volatility
data were smoothed using a fourth, fifth and sixth-order B-spline across a range of smoothing
parameters from λ = 10−3 to λ = 104. Once the data had been smoothed, a random 5% sample
was extracted, and the root mean squared error (RMSE) value was calculated for this sample.
This step was done over 25 trials, and the RMSE was saved for each trial. A histogram of the
RMSE trials was generated for each permutation of order and smoothing parameter across all
six markets. The histograms are summarised in Figures 23 to 28. The RMSE is shown in log10
format, as the actual numbers were too small to fit elegantly on each plot. The red line on the
X-axis represents the mean RMSE over the 25 trials.
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It is evident, from the figures, that at low values of λ, the lower order B-spline basis system
has a smaller RMSE value. Thus, the fourth-order B-spline basis system is the most accurate at
low smoothing parameter values. However, as λ increases, the average RMSE value for each
order B-spline is similar. Therefore, if a larger λ value is used in the smoothing process, there
is little difference in accuracy between different B-spline orders.
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Figure 23: The RMSE of the smooth realised volatility data (5% sample) with different combinations of
smoothing variables for Brazil.
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Figure 24: The RMSE of the smooth realised volatility data (5% sample) with different combinations of
smoothing variables for China.
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Figure 25: The RMSE of the smooth realised volatility data (5% sample) with different combinations of
smoothing variables for India.
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Figure 26: The RMSE of the smooth realised volatility data (5% sample) with different combinations of
smoothing variables for Eurozone.
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Figure 27: The RMSE of the smooth realised volatility data (5% sample) with different combinations of
smoothing variables for the United Kingdom.
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Figure 28: The RMSE of the smooth realised volatility data (5% sample) with different combinations of
smoothing variables for the United States.
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G Functional Regression
This section contains the additional results for the functional regression analysis. The func-
tional regression was done for each of the 22 years. The functional regression results for 2000 -
2021 are given in the full dissertation. The functional regression result for 2008 is in Figures 29.
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Figure 29: The actual (blue) and predicted (red) daily realised volatility for all six markets during the
year 2008.
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