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Abstract

Theory suggests the existence of a bi-directional relationship between
stock market volatility and monetary policy rate uncertainty. In light
of this, we forecast volatilities of equity markets and shadow short rates
(SSR) – a common metric of both conventional and unconventional mone-
tary policy decisions, by applying a bivariate Markov-switching multifrac-
tal (MSM) model. Using daily data of eight advanced economies (Aus-
tralia, Canada, Euro area, Japan, New Zealand, Switzerland, the UK, and
the US) over the period of January, 1995 to March, 2021, we find that
the bivariate MSM model outperforms, in a statistically significant man-
ner, not only the benchmark historical volatility and the univariate MSM
models, but also the Dynamic Conditional Correlation-Generalized Au-
toregressive Conditional Heteroskedasticity (DCC-GARCH) framework,
particularly at longer forecast horizons. This finding confirms the bi-
directional relationship between stock market volatility and uncertainty
surrounding conventional and unconventional monetary policies, which in
turn has important implications for academics, investors and policymak-
ers.
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1 Introduction

As discussed in detail by Poon and Granger (2003), and Rapach et al., (2008),
modeling and forecasting of volatility is a pertinent issue due to several reasons
: Firstly, when volatility is interpreted as uncertainty, it becomes a key input
to investment decisions and portfolio choices. Secondly, volatility is the most
important variable in the pricing of derivative securities. To price an option,
one needs reliable estimates of the volatility of the underlying assets. Thirdly,
financial risk management according to the Basle Accord established in 1996
and later Basel III in 2009 also requires modeling and forecasting of volatility
as a compulsory input to risk-management for financial institutions around the
world. Finally, financial market volatility, as witnessed during the Global Finan-
cial Crisis (GFC), and the recent outbreak of the COVID-19 pandemic (Salisu
et al., 2021a), can have wide repercussions on the economy as a whole, via its
effect on real economic activity (Caggiano et al., 2020; Gupta et al., 2021; Salisu
et al., 2021b) and public sentiment (Baker et al., 2020, Cox et al., 2020). Hence,
estimates of market volatility can serve as a measure for the vulnerability of fi-
nancial markets and the economy, and can help policymakers design appropriate
policies. Given the multi-dimensional importance of appropriate modeling and
accurate forecasting of the process of volatility, not surprisingly, the associated
literature is huge based on wide-array of univariate and multivariate models, as
well as macroeconomic, financial and behavioral predictors.1

In this regard, a series of recent studies (see for instance, Antonakakis et al.,
(2017), Kaminska and Roberts-Sklar (2018), Gupta and Wohar (2019), Paule-
Vianez (2020), Baker et al., (forthcoming)) have depicted both in- and out-
of-sample predictive ability of monetary policy rate uncertainty (volatility) for
stock market volatility of the Euro Area, the United Kingdom (UK) and the
United States (US). Theoretically, this finding obtained by these studies should
not come as a surprise, given that the monetary policy rate (i.e. short-term
risk-free) is a key factor for pricing many securities and derivatives, and hence,
there should be a strong link between monetary policy rate uncertainty and
equity return volatility, at both short- and long-run. This is understandable,
since, according to basic present value models, the variance of equity prices is
directly linked to the conditional variances of future discount rates, which are in
turn, the explicit functions of expected risk-free interest rates and risk premia.

At the same time, stock market volatility may also impact monetary pol-
icy rate uncertainty, resulting in a compromise of the effectiveness of monetary
policy. The argument is that in the wake of especially the Zero Lower Bound
(ZLB) situations as observed during GFC and now under the ongoing coron-
avirus outbreak, low interest rate policies may be destabilizing given that they
destabalize the behaviour of investors towards riskier strategies (Rajan, 2006).
If investor behaviour follows a ‘toddler’s tantrum’, then investors would expect

1See, among others, Engle and Rangel (2008), Rangel et al., (2011), Asgharian et al.,
(2013), Engle et al., (2013), Ben Nasr et al., (2014, 2016), Conrad et al., (2014), Conrad and
Loch (2015), Fang et al., (2020), Liu and Gupta (2020), Liu et al., (2020), Salisu et al., (2020,
forthcoming), Demirer et al., (2021), Salisu and Gupta (2021)).
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that the central bank will provide additional monetary stimulus during increased
financial market turmoil, thereby leading to an increased monetary policy rate
uncertainty. Empirically, this line of reasoning has been validated for the United
States (US) and internationally (for Asian economies, Canada, the Euro area,
Japan and the United Kingdom (UK)) by Valera et al., (2017), Donzwa et al.,
(2019), Hassani et al., (2020) and Hkiri et al., (2021).2 In other words, just like
monetary policy rate uncertainty can lead to increased equity market volatility,
the opposite is supposed to hold as well, implying that stock market volatility
and monetary policy rate uncertainty are endogenous to each other.

Given the underlying endogeneity between stock market volatility and mon-
etary policy rate uncertainty, from an econometric perspective, we primarily
rely on a bivariate version of the Markov-switching multifractal (MSM) model,
to analyze the predictive relationship between these two variables. We moti-
vate the suitability of applying bivariate MSM model as follows. Research on
long memory and structural changes in volatility has discussed the connection
between these phenomena, and has suggested that, in fact, volatility persis-
tence may be due to switching of regimes in the volatility process (Diebold,
1986; Lamoureux and Lastrapes, 1990). Hence, it could be very difficult to
distinguish between true and spurious long memory processes. This ambiguity
motivates us to consider the MSM framework, which, despite allowing for a large
number of regimes, is more parsimonious in parameterization than other alter-
native models. Moreover, it is well-known to give rise to apparent long memory
over a bounded interval of lags (Calvet and Fisher, 2004) and it has limiting
cases in which it converges to a ‘true’ long memory process. In addition to the
bivariate MSM model, we also consider its univariate version, and the Dynamic
Conditional Correlation-Generalized Autoregressive Conditional Heteroskedas-
ticity (DCC-GARCH) method (Engle, 2002), as our benchmark model. With
possible bi-directional causality, our expectations are that the bivariate MSM
should outperform its univariate counterpart, and also the DCC-GARCH, given
the superiority of the econometric structure of the MSM framework in terms of
its ability to correctly distinguish between persietence and regime-changes.

While we present in-sample analysis too, our main focus is out-of-sample
forecasting of stock returns and monetary policy rate volatility, since in-sample
predictability does not necessarily guarantee forecasting gains. Furthermore,
Campbell (2008) stresses that the ultimate test of any predictive model (in
terms of the econometric methodologies and the predictors used) is in its out-
of-sample performance. While high-frequency predictions of stock volatility is
highly important from the perspective of Value-at-Risk calculations required for
the design of investment portfolios (Ghysels and Valkanov, 2012), the same for
monetary policy rate volatility is a pertinent issue for policy authorities. This is
because international evidence has shown that uncertainty with monetary pol-
icy decisions negatively impact economic activity (Istrefi and Mouabbi, 2018;
Husted et al., 2020). In light of this, daily forecasts of monetary policy uncer-
tainty can be fed into mixed data sampling (MIDAS) models to nowcast the

2The reader is also referred to an unpublished earlier work by Xu (2007).
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low-frequency measures of macroeconomic variables capturing the state of the
economy (Bańbura et al., 2011), and in turn can allow policymakers to design
expansionary policies ahead-of-time in case a recession is expected. Naturally,
besides the importance of out-of-sample predictability from a statistical perspec-
tive, real-time forecasts of the volatility of the two variables of concern, rather
than a full-sample-based predictive analysis, are more valuable for investors and
policymakers in making their respective decisions in an optimal manner.

In this paper, for the first time in the literature, we concentrate on the
forecasting of stock market and monetary policy rate volatilities, with the latter
capturing associated uncertainties of central bank decisions simultaneously using
a bivariate MSM framework, besides the univariate MSM and DCC-GARCH,
relative to the benchmark of historical volatility. For our forecasting exercise,
we consider the eight countries/regions namely, Australia, Canada, Euro area,
Japan, New Zealand, Switzerland, the UK, and the US over the daily period
of January, 1995 to March, 2021. Note that, the choice of these mature eq-
uity markets is primarily motivated by their importance in the global economy,
with these countries representing nearly two-third of global net wealth, and
nearly half of world output (Das et al., 2019). In addition to this, since our pe-
riod of analysis involves both conventional and unconventional monetary policy
regimes, we need to consider an uniform metric of monetary policy rate which
can appropriately capture both traditional and non-traditional monetary policy
decisions. In this regard, we use the Shadow Short Rate (SSR), which in turn
is only available for these countries or regions under investigation. The SSR is
based on models of the term-structure, which essentially removes the effect that
the option to invest in physical currency (at an interest rate of zero) has on
yield curves, resulting in a hypothetical “shadow yield curve” that would exist
if the physical currency were not available. The process allows one to answer
the question: “what policy rate would generate the observed yield curve if the
policy rate could be taken negative?” The “shadow policy rate” generated in
this manner, therefore, provides a measure of the monetary policy stance after
the actual policy rate reaches zero. The main advantage of the SSR is that it is
not constrained by the Zero Lower Bound (ZLB), and thus allows us to combine
the data from the ZLB period with that of the non-ZLB era, and in turn to use
it as the common metric of monetary policy stance across the conventional and
unconventional monetary policy episodes.

The remainder of the paper is organized as follows: Section 2 provides in-
formation on the structure of the MSM model and its estimation. Section 3
presents the data and the empirical results. Section 4 concludes the paper.

2 Multifractal models

Most financial markets models are based on additive structure of asset returns
dynamics, and models with multiplicative operations have been introduced re-
cently under the heading of multifractal models. The development of the multi-
fractal approach goes back to Benoit Mandelbrot’s work on the turbulent dissi-
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pation in the 1970s. Financial markets display some similarities to fluid turbu-
lence, for example, both turbulence and financial fluctuations are characterized
by intermittency at all scales, and it is known to occur from the large scale of
injection to the small scale of dissipation, which can be modeled by multifractal
processes.

Mandelbrot et al., (1997) first introduced the multifractal apparatus into
finance, adapting the approach of Mandelbrot (1974) to an asset-pricing frame-
work. This multifractal model of asset returns (MMAR) assumes that returns
rt follow a compound process, in which an incremental fractional Brownian
motion is subordinate to the cumulative distribution function of a multifrac-
tal measure. However, the practical applicability of MMAR suffers from the
non-causal nature of the time transformation and non-stationarity due to the
inherent restriction to a bounded interval. These limitations have been overcome
by the development of an iterative version of the multifractal models, including
the Markov-switching multifractal model (MSM), cf. Calvet and Fisher (2004)
and Lux (2008). In this approach, asset returns volatilities are conceived as hi-
erarchical multiplicative processes with heterogeneous components at different
lifetimes. Specifically, MSM models asset returns as:

rt = σ

(
k∏
i=1

M
(i)
t

)1/2

· εt, (1)

with εt drawn from a standard normal distribution, and the instantaneous
volatility is determined by the product of k volatility components or multipli-

ers M
(1)
t , M

(2)
t ..., M

(k)
t , with a constant scale parameter σ. In addition, Mt

can be drawn from either a discrete distribution, e.g., a binomial distribution
in Calvet and Fisher (2004), or a continuous distribution, e.g., lognormal dis-
tribution in Lux (2008). Each volatility component is renewed at time t with
probability γi depending on its rank within the hierarchy of multipliers or re-
mains unchanged with probability 1− γi. Calvet and Fisher (2004) propose to
specify the transition probabilities as:

γi = 1− (1− γ1)(b
i−1), (2)

with parameters γ1 ∈ (0, 1) and b ∈ (1,∞); In contrast, without introducing
additional parameters, Lux (2008) proposes γi = 2(k−i). Both specifications
guarantee convergence of the discrete-time multifractal process to a limiting
continuous-time version with random renewals of the multipliers.

This novel approach preserves the hierarchical structure of MMAR, but dis-
penses with its restriction to a bounded interval. While this model is asymp-
totically “well-behaved” (i.e., it shares all the convenient properties of Markov-
switching processes), it is still capable of capturing some important properties of
financial markets time series data, namely, volatility clustering and the power-
law behaviour of the autocovariance function of absolute moments:

Cov(|rt|q, |rt+τ |q) ∝ τ2d(q)−1. (3)
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Eq. (3) implies multifractal models are rather characterized by only ‘appar-
ent’ long-memory with an approximately hyperbolic decline of the autocorrela-
tion of absolute powers over a finite horizon and exponential decline thereafter.
In particular, approximately hyperbolic decline as expressed in eq. (3) holds
only over an interval 1� τ � bk, with b the parameter of the transition prob-
abilities of eq. (2), and k being the number of hierarchical cascade levels.

2.1 Bivariate multifractal models

In order to study the interactions and comovements among financial assets, mul-
tifractal models can be easily extended to multivatiate setting without imposing
much restrictions such as bivariate models. Calvet et al., (2006) assume that
instantaneous volatility is composed of heterogenous frequencies, and model the
bivariate asset returns rt as:

rt = σ ⊗ [g(Mt)]
1/2 ⊗ εt. (4)

Here, rt, σ, and ut are all bivariate vectors: rt =

[
r1,t
r2,t

]
, σ =

[
σ1
σ2

]
, εt =[

ε1,t
ε2,t

]
, and ⊗ denotes element by element multiplication. σ is the vector of

constant scale parameters (the unconditional standard deviation); εt is a 2× 1
vector whose elements follow a bivariate standard normal distribution, with
an unknown correlation parameter ρ. g(Mt) is the vector of the products of

multifractal volatility components, i.e. g(Mt) =

[
g(M1,t)
g(M2,t)

]
, with each element

defined as in the univariate case:

g(Mn,t) =

k∏
i=1

M
(i)
n,t, (5)

as the product of volatility components for asset n, and the bivariate volatility
components at frequency i of series n = 1, 2:

M
(i)
t =

[
M

(i)
1,t

M
(i)
2,t

]
. (6)

M
(i)
t are drawn from the bivariate binomial distribution M = (M1, M2)′,

with M1 taking values m1 ∈ (1, 2) and 2−m1, and M2 taking values m2 ∈ (1, 2)
and 2 −m2. While the framework by Calvet et al., (2006) allow for variation
of the correlation (say, ρm) between components M1 and M2, they report that
a correlation ρm equal to one is never rejected in their empirical applications.
We, therefore, restrict this parameter to unity to economize on the number of
parameters to be estimated.

In addition, whether or not a volatility component (new arrival) being up-
dated for the individual multifractal processes is governed by the transition

6



probabilities, we use γi = 2(k−i) as in Lux (2008). The correlation of arrivals
between the two series is characterized by a parameter λ ∈ [0, 1], i.e., the proba-
bility of a new arrival at hierarchy level i for one time series given a new arrival
in the other time series is (1− λ)γi + λ. New arrivals are independent if λ = 0
and simultaneous if λ = 1.

2.2 Filtering via simulation

The extension to bivariate multifractal model poses challenges for the estimation

of the model parameters. For a binomial distribution of the multipliers M
(i)
n,t,

with both assets being characterized by the same number k of multipliers, the
bivariate model has the Markov-switching structure with a total of (22)k = 4k

different states, i.e., mi, with i = 1, 2, . . . , 4k. The likelihood function of such a
Markov-switching model is defined in the conventional way as follows:

f(r1, · · · , rT ; θ) =

T∏
t=1

f(rt|r1, · · · , rt−1) (7)

=

T∏
t=1

f(rt|Mt = mi) ·
4k∑
i=1

P (Mt = mi|r1, · · · , rt−1)

 .
with θ being the vector of parameters. The transition matrix A is composed of
the conditional probabilities aij = P (Mt+1 = mj |Mt = mi) with i, j = { 1, 2 . . .
4k}, with the conditional probability defined as: πit = P (Mt = mi|r1, · · · , rt).

In general, it is always possible to implement the maximum likelihood es-
timation via Eq. (7) when the dimension size of the transition matrix A is
reasonable. Since the large degree of heterogeneity of volatility trajectories that
can be modelled with a relatively large number of k is one of most attractive
features of the multifractal approach, therefore, with a larger number of k, the
numerous multiplications with the transition matrix A within an optimization
step pose computational constraints on this straight forward approach of Eq.
(7). One can easily see the computational complexity of evaluating the 4k × 4k

elements of the transition matrix at each time-step for the maximum likelihood
estimation. In practice, it hardly works for the number of multipliers larger
than 5, i.e., k > 5, due to the capacity of the current personal computer. 3

In order to reduce the computational burden, Calvet et al., (2006) propose
a simulation-based maximum likelihood (SML) approach using a particle filter
with sampling/importance resampling (SIR), cf. Rubin (1987), Pitt and Shep-
hard (1999). Instead of explicitly evaluating the exact 4k × 4k elements within
the transition matrix, the particle filter uses an approximation to the prediction
probability density P (Mt = mi

t|rt−1), by using the discrete support of a finite

3For arbitrary n-variate processes it would amount to (2n)k, moving on to trivariate models,
the dimension of the transition matrix would become 8k, which could only be handled with
much smaller k. Also, the variants of MSM with a continuous distribution of multipliers could
not be estimated via maximum likelihood approach at all due to their infinite state spaces.
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number B of particles. Denoting by m(b) the volatility state of any particle
b = 1, . . . , B, the one-step-ahead conditional probability is approximated by:

πit ∝ f(rt|Mt = mi)
1

B

B∑
b=1

P (Mt = mi|Mt−1 = m(b)). (8)

As can be seen, Eq (8) provides a discrete approximation of the conditional
densities by filtering the particles. This approximation not only simplifies the
maximum likelihood estimation by avoiding evaluation of the infeasible dimen-
sions of the transition matrix, but also provides a practical solution for multi-
step forecasting. For instance, to conduct one-step ahead forecast, we complete
the approximation by simulating each m(b) one-step forward and re-weighting
using an importance sampler as follows:

1. Simulate the Markov chain one-step-ahead to obtain M̂
(1)
t+1 given M

(1)
t .

Repeat B times to generate draws M̂
(1)
t+1, M̂

(2)
t+1, . . . , M̂

(B)
t+1 .

2. This preliminary step only uses information available at date t, and must
therefore be adjusted to account for the new return. Drawing a random
number q from 1 to B with probabilities of:

P (q = b) =
f(rt+1 |Mt+1 = m(b))∑B
i=1 f(rt+1 |Mt+1 = m(i))

. (9)

3. We then select M
(1)
t+1 = M̂

(q)
t+1, and repeat B times to obtain B draws to

get the new M
(1)
t+1, . . .M

(B)
t+1 , which have been adjusted to account for the

new realizations.

This recursive procedure provides a discrete approximation to Bayesian up-
dating, which is computationally convenient in large state spaces. We will follow
the procedure for the volatility forecasting in the next section.

3 Data and Empirical Results

3.1 Data Description

We have collected the SSRs, which as indicated in the introduction is a common
monetary policy instrument that captures both conventional and unconventional
monetary policy decisions for the eight countries/regions, namely Australia,
Canada, Euro area, Japan, New Zealand, Switzerland, the UK, the US, and
their corresponding Morgan Stanley Capital International (MSCI) stock markets
indices in US dollars. The SSR estimates used in this paper are derived from
the works of Krippner (2013, 2015) and are considered to be an improvement
over those obtained by Wu and Xia (2016), as discussed in detail by Krippner
(2020). Besides the robust methodology used by Krippner (2013, 2015) in the
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estimation of the SSRs, the SSR estimates are available at daily rather than
monthly frequency, and also for eight countries/regions instead of three (i.e., the
Euro area, the UK and the US), as in the case of Wu and Xia (2016). Both SSR
and MSCI time series data cover the period from 02/01/1995 to 26/03/2021,
with the start and end dates being driven by the availability of the SSR estimates
at the time of writing this paper. We calculate daily MSCI stock index returns as
the log difference rt = ln(MSCIt)− ln(MSCIt−1), where MSCIt is the MSCI
stock index. While, SSR change is calculated as the difference of SSRt, i.e.,
rt = SSRt − SSRt−1. While the MSCI indexes are obtained from Datastream,
the SSRs are derived from the website of Dr. Leo Krippner.4

Table 1 reports the descriptive statistics of SSR and MSCI returns for the 8
countries/regions. In general, we observe the SSR mean returns are all negative,
and their standard deviations are relatively larger than ones of MSCI index
returns. We also observe that most of MSCI index returns exhibit negative
skewness except for Japan, and all countries have considerable positive excess
kurtosis. The autocorrelations for the squared returns at different time lag are
also reported, and one can see not only the significant autocorrelation at short
time lag of 5 days but also for longer horizon of 100 days, which are evident
of apparent long term dependency of squared returns as proxy of volatility.
Table 1 also reports the pertinent ARCH tests and the Augmented Dickey-
Fuller (ADF, Dickey and Fuller (1981)) statistics in the bottom two rows, which
depicts evidence of significant volatility clustering, and the stationarity of the
empirical data.

3.2 Empirical Findings

We separate each time series data into two subsets (i.e., in-sample data used
for estimation, and out-of-sample data for forecasting assessment). We estimate
the in sample data from 02/01/1995 to 15/08/2008 when Lehman Brothers filed
bankruptcy, and then perform out-of-sample evaluation of volatility using data
from 16/08/2008 to 26/03/2021, based on the DCC-GARCH, and the univariate
and bivariate multifractal models. The in-sample DCC -GARCH estimates are
shown in Table 2. Specifically, we estimate the bivariate DCC-GARCH model
of Engle (2002), which is an extension of the conventional GARCH model of
Engle (1982). With the univariate GARCH (1, 1) formulated as: r = µ + εt,
and εt|It−1 ∼ N(0, σt), the volatility process follows: σt = ω + α · ε2t−1 + β ·
σ2
t−1. The dynamic conditional correlation (DCC) has a non-linear GARCH-

type specification: Qt = (1 − a − b)Q̄ + aεt · ε′t−1 + bQt−1, where a and b
are the so-called news and decay coefficients, respectively. Q̄ = E[εt · ε′t−1] is
the unconditional variance and covariance matrix of the standardized residuals
(the unconditional covariance) and ρ12 represents the unconditional correlation
coefficient in the matrix Q̄.5 The GARCH parameters for individual time series

4https://www.ljkmfa.com/.
5We also studied the DCC-GARCH of Tse and Tsui (2002), where: Rt = (1 − a − b)R +

aεt · ε′t−1 + bRt−1, with Rt = diag(Qt)−1Qtdiag(Qt)−1. However, we found qualitatively
similar results, which are available upon request from the authors.
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have their usual interpretation. Though most of GARCH persistent parameter
β estimates for the MSCI indexes returns are within a reasonable range, i.e.,
around 0.9, the GARCH reaction parameter estimates α for the SSR returns
are much higher, and is indicative of relatively more spikes in volatility.

Table 3 reports univariate and bivariate models estimates for SSR and MSCI
indexes returns for the eight countries/regions. Note that the vector of multi-
fractal model parameters consists of {m1,i, σi, ρ, λ} (i stands for SSR and MSCI).
We adopt a similar two-stage procedure proposed by Calvet et al., (2006), which
combines an ML estimator for the first group of parameters {m1,i, σi} with
an SML estimator for the second group {ρ and λ}. The latter are obtained
through the particle filter approach keeping the first set of parameters at their
ML-estimated values, and we then maximize the simulated likelihood using the
Nelder-Mead algorithm. The two-stage approach provides a reduction in com-
putation time against a complete SML approach, and it also makes the choice
of larger number of cascade level k feasible. Note that, use k = 8 which is
consistent with the existing literature. The first four of these parameters could
be identified by an estimator for a univariate multifractal model, while the re-
maining ones require the complete bivariate data set. In terms of fractality of
volatility as measured by the parameter m1, we find that SSR returns exhibit
stronger persistence than the MSCI returns for each pair of countries/regions.
The unconditional volatility estimate of σ reveals that SSR returns are much
volatile than those of the MSCI indexes. In terms of correlation of innovations
ρ, most of countries exhibit strong positive correlations, except the cases of
Canada and New Zealand. Since the correlation across markets often pertains
to arrival of new volatility components, empirical estimates of λ show significant
degree of co-movement for all pairs of SSR and MSCI returns, with the result
for the US appearing to be more pronounced. These findings are in line with the
possible bi-directional relationship outlined in the introduction between stock
market volatility and monetary policy rate uncertainty, and corroborates the
need to use a bivariate multifractal approach.

Table 4 to Table 6 present the out-of-sample forecasting performances at
different horizons with a range 1 day to 100 days. We report relative mean
square error (RMSE) and relative mean absolute error (RMAE), i.e., MSE and
MAE divided by the respective statistics of the naive volatility predictor (derived
using historical volatility). Therefore, any value smaller than 1 indicate an
improvement relative to historical volatility. A glance of Table 4 reveals that
the volatility forecasting performance of the DCC-GARCH models are quite
accurate in most of the short-term horizons, specifically for one- and five-steps-
ahead forecasts. However, its performance deteriorates at longer horizons, i.e.,
for 50- and 100-days-ahead forecasts in particular.

We now turn to Table 5 and Table 6, which reports the forecasting perfor-
mances of the univariate and bivariate multifractal models. Though our results
are not entirely homogeneous, in general, one can observe that accurate fore-
casts are obtained when we incorporate the information contents of both SSR
and MSCI returns within the bivariate multifractal models. The fact that these
gains are statistically significant relative to the univariate version of the multi-
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fractal model is also strongly confirmed by the dominant number of significant
Diebold and Mariano (1995) test statistics reported in Table6. This observa-
tion confirms the underlying theoretical relationship that is likely to exist in
both directions between the volatility process of the stock and SSR returns, as
discussed in detail in the introduction.

We then assessed the forecasting performances across the bivariate multi-
fractal and the DCC-GARCH model, which are also included in Table 6. In
general, the bivariate multifractal model outperforms the DCC-GARCH in a
statistically significant manner at long horizons under under both RMSE and
RMAE criteria, and at all horizons under the latter. The results are expected,
especially if we recall the autocorrelations of squared returns reported in Table 1,
which show that there are still sizeable autocorrelations at the 100-day lag as can
be seen from the ACF(100). Alternatively, while the traditional GARCH-type
models are not able to capture the existence of significant long-term dependence
(i.e., long-memory) present in the data, the multifractal models produce better
forecasting performances by their ability to capture the same in a genuine, i.e.,
non-spurious-manner, by allowing for regime-switching cascades.

4 Concluding remarks

Theoretically it is expected that stock market volatility and the monetary pol-
icy rate uncertainty share a bi-directional relationship. Given this, we forecast
equity market volatility and do the same for the shadow short rate (SSR),
capturing both conventional and unconventional monetary policy decisions, of
eight advanced economies (Australia, Canada, Euro area, Japan, New Zealand,
Switzerland, the UK, and the US) using bivariate Markov-switching multifractal
(MSM) model over the daily period of January, 1995 to March, 2021. We find
that, in line with the theoretical expectations, besides in-sample evidence, the
bivariate MSM method generate smaller forecasts errors in a statistically signifi-
cant manner, relative to not only the benchmark historical volatility and the uni-
variate MSM models, but also the Dynamic Conditional Correlation-Generalized
Autoregressive Conditional Heteroskedasticity (DCC-GARCH) framework, par-
ticularly at longer forecast horizons.

Our results have important implications for academics, investors and pol-
icymakers. First, from the perspective of a financial economist, our analyses
provide support to the theoretical claim of two-way Granger causality between
stock market volatility and the uncertainty surrounding conventional and un-
conventional monetary policy. Further, the superior performance of the bivari-
ate MSM model, highlights the need to capture long-memory and structural
breaks simultaneously, when forecasting stock market and monetary policy rate
volatilities based on information contained in these two endogenous variables for
each other. Second, this latter finding also suggests that investors can improve
their portfolio allocation, pricing of derivative securities and risk management
by accommodating the role of monetary policy uncertainty into their models
of volatility that are primarily multivariate in nature and capture long-memory
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and regime changes, i.e., via the usage of a bivariate MSM model. Finally, since
stock market volatility provides high-frequency forecasts of monetary policy rate
uncertainty, which in turn is known to contain leading information for economic
activity, policymakers can nowcast low-frequency macroeconomic variables, and
design appropriate policy responses in advance. In the current context of the
COVID-19 pandemic which has resulted in tremendous stock market volatility,
our findings become even more crucial for investors and policymakers.

As part of future research, it would be interesting to extend our analyses to
emerging economies, conditional on the availability of SSR estimates for these
countries.
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Table 2: In-sample estimates for the DCC GARCH(1,1) model

Australia Canada EU Japan
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

µ -0.083 0.056 -0.005 0.088 -0.073 0.064 -0.204 0.005
(0.049) (0.018) (0.044) (0.016) (0.029) (0.014) (0.031) (0.020)

ω 2.544 0.038 0.218 0.014 0.810 0.011 0.528 0.030
(0.349) (0.010) (0.047) (0.004) (0.075) (0.003) (0.101) (0.008)

α 0.357 0.073 0.214 0.076 0.509 0.092 0535 0.075
(0.072) (0.017) (0.056) (0.020) (0.067) (0.012) (0.057) (0.009)

β 0.358 0.901 0.779 0.917 0.182 0.901 0.397 0.912
(0.174) (0.025) (0.044) (0.023) (0.109) (0.013) (0.065) (0.010)

ρ12 -0.258 -0.016 -0.017 -0.043
(0.021) (0.037) (0.091) (0.058)

a 0.011 0.012 0.023 0.010
(0.004) (0.034) (0.006) (0.003)

b 0.988 0.984 0.971 0.986
(0.005) (0.052) (0.010) (0.004)

New Zealand Switzerland UK USA
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

µ -0.194 0.047 -0.012 0.057 -0.088 0.052 -0.022 0.057
(0.037) ()0.019 (0.025) (0.015) (0.038) (0.015) (0.044) (0.014)

ω 1.337 0.041 0.520 0.033 1.388 0.018 1.627 0.008
(0.107) (0.010) (0.037) (0.007) (0.190) (0.005) (0.214) (0.002)

α 0.179 0.088 0.810 0.098 0.321 0.086 0.211 0.064
(0.036) (0.038) (0.038) (0.011) (0.076) (0.014) (0.032) (0.011)

β 0.784 0.891 0.022 0.875 0.626 0.899 0.784 0.930
(0.120) (0.046) (0.027) (0.014) (0.110) (0.018) (0.030) (0.012)

ρ12 -0.012 0.046 -0.047 -0.053
(0.051) (0.029) (0.262) (0.281)

a 0.007 0.012 0.015 0.020
(0.003) (0.005) (0.009) (0.007)

b 0.988 0.982 0.982 0.976
(0.005) (0.008) (0.015) (0.011)

Note: This table reports the in-sample estimates for DCC-GARCH model for the shadow
short rate (SSR) returns of the 8 countries/regions: Australia, Canada, Eurozone, Japan,
New Zealand, Switzerland, UK, US, and their corresponding MSCI stock indexes. GARCH
parameters estimates (µ, ω, α, β) are obtained via estimating the univariate GARCH model
for each SSR and MSCI returns individually: r = µ+εt, and the volatility process σt = ω+α ·
ε2t−1+β ·σ2

t−1. The DCC parameter estimates (a and b) in Qt = (1−a−b)Q̄+aεt ·ε′t−1+bQt−1

are obtained by joint estimation for each pair of SSR and MSCI returns.
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Table 3: In-sample estimates of the multifractal models

Australia Canada EU Japan
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

m1,i 1.324 1.233 1.386 1.270 1.309 1.258 1.357 1.228
(0.019) (0.011) (0.028) (0.005) (0.012) (0.007) (0.012) (0.005)

σi 2.893 1.277 3.615 1.143 1.619 1.060 1.904 1.392
(0.022) (0.010) (0.028) (0.013) (0.013) (0.012) (0.022) (0.011)

ρ 0.036 0.012 0.100 0.136
(0.017) (0.013) (0.021) (0.022)

λ 0.165 0.157 0.150 0.135
(0.002) (0.011) (0.031) (0.045)

New Zealand Switzerland UK USA
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

m1 1.433 1.270 1.405 1.248 1.333 1.245 1.317 1.267
(0.027) (0.007) (0.029) (0.005) (0.017) (0.010) (0.021) (0.004)

σ 2.718 1.360 1.564 1.143 2.276 1.096 2.617 1.021
(0.022) (0.010) (0.029) (0.005) (0.017) (0.005) (0.017) (0.007)

ρ -0.016 0.058 0.092 0.043
(0.021) (0.024) (0.041) (0.007)

λ 0.150 0.149 0.150 0.270
(0.0011) (0.022) (0.012) (0.047)

Note: This table reports the in-sample estimates of the parameters of the univariate and
bivariate multifractal model for the shadow short rate (SSR) returns of the 8 countries/regions:
Australia, Canada, Eurozone, Japan, New Zealand, Switzerland, the UK, and the US, and
their corresponding MSCI stock index returns. The estimation is based on the two-step
estimation, that is, m1 and σ for SSR and stock index returns are obtained by maximizing the
univariate likelihood, and in the second-step, we obtain ρ and λ by maximizing the simulated
bivariate likelihood given the estimates of the first-step. Standard errors for the second step
estimates are computed as in Calvet et al., (2006, Appendix A.4).
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Table 4: Volatility forecasts: DCC-GARCH model

Australia Canada EU Japan
Horizon SSR MSCI SSR MSCI SSR MSCI SSR MSCI

RMSE
1 0.542 0.745 0.425 0.769 0.656 0.843 0.463 0.833
5 0.967 0.807 0.654 0.823 0.930 0.859 0.909 0.895

10 0.998 0.849 0.718 0.908 0.992 0.898 1.204 0.923
20 0.999 0.883 0.759 0.973 0.998 0.962 1.477 0.998
50 0.999 0.976 1.179 1.114 0.998 1.039 1.866 1.038

100 0.999 0.992 1.768 1.083 0.999 1.013 1.933 1.017
RMAE

1 0.735 0.943 0.293 0.953 0.709 1.060 0.492 0.839
5 0.964 0.947 0.394 0.979 0.986 1.072 0.904 0.866

10 0.993 0.964 0.465 1.029 1.007 1.096 1.205 0.889
20 0.997 0.986 0.584 1.082 1.010 1.142 1.526 0.936
50 0.997 1.000 0.994 1.188 1.011 1.183 1.807 1.007

100 0.997 1.002 1.730 1.233 1.012 1.183 1.849 1.057

New Zealand Switzerland UK USA
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

RMSE
1 0.966 0.805 0.585 0.834 0.545 0.830 0.582 0.774
5 1.391 0.860 0.858 0.858 0.913 0.848 0.924 0.834

10 1.561 0.906 0.946 0.892 0.983 0.894 0.986 0.913
20 1.724 0.935 0.995 0.941 0.999 0.953 1.034 1.021
50 1.808 0.971 1.031 0.981 1.052 1.013 1.075 1.139

100 2.042 0.998 1.044 0.993 1.099 1.020 1.096 1.110
RMAE

1 0.490 0.943 0.520 0.916 0.631 1.031 0.692 0.937
5 0.861 0.958 0.985 0.932 0.956 1.042 0.948 0.97

10 1.318 0.973 1.095 0.949 0.998 1.059 1.005 1.018
20 1.546 0.991 1.131 0.969 1.007 1.082 1.021 1.076
50 1.603 1.035 1.146 0.996 1.008 1.075 1.033 1.191

100 1.788 1.070 1.153 1.007 1.008 1.044 1.040 1.228

Note: This table reports the multi-horizon volatility forecast performances based on the DCC-
GARCH(1,1) model for the shadow short rate (SSR) returns of 8 countries/regions: Australia,
Canada, Eurozone, Japan, New Zealand, Switzerland, the UK, and the US and their cor-
responding MSCI index returns. We report the relative MSE (RMSE) and relative MAE
(RMAE) measurements, computed by dividing the MSE and MAE estimates by the pertinent
MSE and MAE of the naive volatility predictor (using historical volatility), therefore any
values smaller than 1 indicate an improvement against historical volatility.
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Table 5: Volatility forecasts: Univariate multifractal model

Australia Canada EU Japan
Horizon SSR MSCI SSR MSCI SSR MSCI SSR MSCI

RMSE
1 0.678 0.892 0.417 0.835 0.734 0.926 0.558 0.896
5 0.914 0.919 0.554 0.871 0.913 0.938 0.823 0.933

10 0.950 0.945 0.578 0.912 0.961 0.944 0.937 0.939
20 0.902 0.941 0.533 0.946 0.988 0.954 0.962 0.965
50 1.027 0.973 0.549 0.995 1.066 0.971 0.993 0.982

100 1.041 1.001 0.568 1.021 1.089 0.984 1.044 0.993
RMAE

1 0.713 0.949 0.285 0.908 0.821 0.963 0.511 0.819
5 0.788 0.956 0.356 0.903 0.987 0.957 0.662 0.839

10 0.805 0.964 0.366 0.919 1.026 0.965 0.719 0.843
20 0.795 0.979 0.359 0.936 1.039 0.979 0.759 0.854
50 0.827 0.998 0.362 0.975 1.096 0.991 0.759 0.870

100 0.844 1.056 0.376 1.019 1.129 1.026 0.788 0.872

New Zealand Switzerland UK USA
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

RMSE
1 0.739 0.877 0.676 0.909 0.680 0.937 0.692 0.844
5 0.899 0.908 0.867 0.926 0.863 0.949 0.907 0.898

10 0.931 0.917 0.927 0.936 0.899 0.955 0.962 0.912
20 0.979 0.933 0.999 0.948 0.952 0.966 1.005 0.937
50 1.051 0.970 1.034 0.979 0.986 0.998 1.059 1.011

100 1.097 1.029 1.043 0.996 1.034 1.087 1.087 1.038
RMAE

1 0.447 0.945 0.691 0.891 0.74 0.949 0.709 0.878
5 0.584 0.954 0.892 0.899 0.902 0.948 0.843 0.888

10 0.610 0.949 0.983 0.904 0.938 0.953 0.865 0.908
20 0.636 0.961 1.057 0.912 0.965 0.966 0.890 0.931
50 0.698 0.981 1.073 0.931 1.014 0.981 0.925 1.003

100 0.637 1.015 1.129 0.954 1.064 0.997 0.946 1.046

Note: This table reports the multi-horizon volatility forecast performances based on the uni-
variate multifractal model for the shadow short rate (SSR) returns of 8 countries/regions:
Australia, Canada, Eurozone, Japan, New Zealand, Switzerland, the UK, and the US and
their corresponding MSCI index returns. We report the relative MSE (RMSE) and relative
MAE (RMAE) measurements, computed by dividing the MSE and MAE estimates by the per-
tinent MSE and MAE of the naive volatility predictor (using historical volatility), therefore
any values smaller than 1 indicate an improvement against historical volatility.
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Table 6: Volatility forecasts: Bivariate multifractal model

Australia Canada EU Japan
Horizon SSR MSCI SSR MSCI SSR MSCI SSR MSCI

RMSE
1 0.659* 0.852* 0.404*] 0.815* 0.739 0.915* 0.570 0.862*
5 0.898*] 0.871* 0.539*] 0.833* 0.904*] 0.925* 0.819] 0.894*

10 0.955] 0.891* 0.567*] 0.872*] 0.953*] 0.933* 0.938] 0.901*]

20 0.899] 0.920* 0.460*] 0.942*] 0.978* 0.947*] 0.965] 0.952*]

50 1.029 0.971] 0.445*] 0.983*] 1.056* 0.970] 0.998] 0.990]

100 1.037 1.012* 0.463 *] 1.005*] 1.080* 0.985] 1.046] 1.001]

RMAE
1 0.721] 0.930*] 0.275*] 0.886*] 0.820 0.966] 0.495* 0.805*]

5 0.797] 0.936*] 0.338*] 0.886*] 0.967*] 0.960] 0.638*] 0.825*]

10 0.816] 0.944*] 0.349*] 0.899*] 1.003* 0.970] 0.698* 0.829*]

20 0.805] 0.959*] 0.342*] 0.913*] 1.012* 0.988] 0.740*] 0.843*]

50 0.848] 1.010 0.344*] 0.940*] 1.070* 1.005] 0.743 0.860*]

100 0.870] 1.058 0.357*] 0.974*] 1.105* 1.035] 0.769 0.863*]

New Zealand Switzerland UK USA
SSR MSCI SSR MSCI SSR MSCI SSR MSCI

RMSE
1 0.720*] 0.861* 0.608* 0.884* 0.645* 0.917* 0.699 0.815*
5 0.880*] 0.892* 0.836*] 0.902* 0.838*] 0.930* 0.907] 0.874*

10 0.913*] 0.887*] 0.932] 0.917* 0.887*] 0.937] 0.973] 0.901*]

20 0.967*] 0.918*] 1.037 0.936* 0.952] 0.955 1.025] 0.948]

50 1.033*] 0.972 1.040 0.984 1.013] 0.979] 1.065] 0.996*]

100 0.981*] 1.034 1.051 1.008 1.072] 0.989] 1.092 1.017*]

RMAE
1 0.436*] 0.933*] 0.678*] 0.895] 0.738 0.954] 0.706* 0.859*]

5 0.568*] 0.943*] 0.913] 0.904] 0.903] 0.952*] 0.822] 0.869*]

10 0.594*] 0.937*] 0.995] 0.912] 0.944] 0.959] 0.853*] 0.883*]

20 0.623*] 0.949*] 1.068] 0.924] 0.977] 0.978] 0.877*] 0.902*]

50 0.680*] 0.972*] 1.090] 0.954] 1.014 1.001] 0.903*] 0.951*]

100 0.624*] 1.005*] 1.131] 0.974] 1.073 1.016] 0.936*] 0.985*]

Note: This table reports the multi-horizon volatility forecast performances based on the bi-
variate multifractal model for the shadow short rate (SSR) returns of 8 countries/regions: Aus-
tralia, Canada, Eurozone, Japan, New Zealand, Switzerland, UK, US and their corresponding
MSCI index returns. We report the relative MSE (RMSE) and relative MAE (RMAE) mea-
surements, computed by dividing the MSE and MAE estimates by the pertinent MSE and
MAE of the naive volatility predictor (using historical volatility), therefore any values smaller
than 1 indicate an improvement against historical volatility. ] indicates an improvement of
the bivariate multifractal model against the DCC-GARCH model at 5% level; * indicates an
improvement of bivariate multifractal model against the univariate model at 5% level; All
comparisons are based on the test statistics of Diebold and Mariano (1995).
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