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The Effects of Climate Risks on Economic Activity in a Panel of US States: The Role of 

Uncertainty 
 Xin Sheng*, Rangan Gupta** and Oğuzhan Çepni*** 
 

Abstract We analyse the impact of climate risks (temperature growth and its volatility) on the coincident 
indicator of the 50 US states in a panel data set-up, over the monthly period of March, 1984 to 
December, 2019. Using impulse response functions (IRFs) from a linear local projections (LPs) 
model, we show that climate risks negatively impact economic activity to a similar degree, 
irrespective of whether such risks are due to changes in temperature growth or its volatility. 
More importantly, using a nonlinear LPs model, the IRFs reveal that the adverse effect of 
climate risks is contingent on the regimes of economic and policy-related uncertainty of the 
states, with the impact being significantly much stronger under relatively higher values of 
uncertainty, rather than lower values of the same. In addition to this, temperature growth 
volatility is found to contract economic activity nearly five-times more compared to when 
temperature growth increases by a similar magnitude in the higher uncertainty-based-regime 
of the nonlinear model. Understandably, our results have important policy implications.  
 Keywords: Climate Risks, Uncertainty, Economic Activity, US States, Linear and Nonlinear 
Local Projections, Impulse Response Functions 
JEL Codes: C23, D80, E32, Q54 

 
1. Introduction  

Climate change is one of the most defining challenges of our time, with the potential to impact 
the health and well-being of every person on the planet by posing a large aggregate risk to the 
economy (Giglio et al., 2021). In this regard, Descêhnes and Greenstone (2007) and Dell et al., 
(2009, 2012, 2014) provided empirical evidence that climate risks, as proxied via increased 
temperatures, tend to negatively impact economic growth. More recently, Donadelli et al., 
(2017, 2021a, b, c; Kotz et al., 2021) highlight the importance of temperature volatility, in 
reducing growth. The novelty of these latter group of  studies, besides providing empirical 
evidence, is that Donadelli et al., (2017, 2021a, b, c) extended the general equilibrium models 
of rare disaster risks (originally developed by Barro (2006, 2009)) to incorporate the physical 
component of climate risks1 so as to make explicit the theoretical channels through which the 
economy is impacted. In general, the theoretical framework of these research efforts show that 
climate risks tend to undermine economic growth via adversely impacting not only labor 
productivity and capital quality, but also through the patent obsolescence channel (which 
dampens research and development (R&D) expenditure growth). In other words, climate risks 
can impact growth from both the demand- and supply-side of the economy. 
 
                                                             
* Corresponding author. Lord Ashcroft International Business School, Anglia Ruskin University, Chelmsford, 
United Kingdom. Email address: xin.sheng@anglia.ac.uk. 
** Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. Email address: 
rangan.gupta@up.ac.za. 
*** Copenhagen Business School, Department of Economics, Porcelænshaven 16A, Frederiksberg DK-2000, 
Denmark; Central Bank of the Republic of Turkey, Haci Bayram Mah. Istiklal Cad. No:10 06050, Ankara, Turkey. 
Email address: oce.eco@cbs.dk. 
1 There are also of course transition risks associated with climate change, e.g. risks stemming from government 
intervention via carbon taxation and incentives to develop green technologies.  
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Against the backdrop of empirical evidence of the impact of climate risks on output growth, 
provided primarily at the aggregate individual or a panel of countries, we aim to extend this 
line of research in two novel ways: First, we analyse, for the first time, the effects of both 
growth in temperature and its volatility on the economic activity of a panel of 50 states of the 
United States (US), over the monthly period of 1984 to 2019.2 Second, and again for the first 
time, we test the hypothesis that, the effect of climate risks is contingent on the level of 
economic- and policy-related uncertainty involving the US states, with the expectation that, 
effects of temperature growth and its volatility is likely to be relatively more adverse under a 
regime of higher-uncertainty compared to a state of lower values of the same.  
 
The theoretical motivation in this regard is derived from the following lines of reasoning: First, 
higher uncertainty is known to adversely affect the aggregate demand of the economy through 
the traditional channel associated with the real option theory (Bernanke, 1983, and more 
recently, Bloom (2009)), suggests that decision-making is affected by uncertainty because it 
raises the option value of waiting. In other words, given that the costs associated with wrong 
investment decisions are very high, uncertainty makes firms and, in the case of durable goods, 
also consumers more cautious. As a result, economic agents postpone investment, hiring, and 
consumption decisions to periods of lower uncertainty. Second, uncertainty is also expected to 
have a negative effect on the supply-side of the economy through productivity due to the 
misallocation of factors across firms (Bloom et al., 2018). According to Bloom et al., (2018), 
unproductive firms contract and productive firms expand during normal times, which in turn 
helps to maintain high levels of aggregate productivity. But when uncertainty is high, firms 
reduce expansion and contraction, thus shutting-off much of this productivity-enhancing 
reallocation, which ultimately manifests itself as a fall in measured aggregate total factor 
productivity. Naturally, given these two channels, the negative effect of climate risks on 
economic activity via adverse effects on demand and supply conditions is likely to be 
exacerbated under comparatively higher levels of economic uncertainty.  
 
The remainder of the paper is organized as follows: Section 2 discusses the data, while Section 
3 presents the linear and nonlinear local projections (LPs) method of Jordà (2005), and Ahmed 
and Cassou (2016) respectively, in the context of a panel data-setting. These methods are then 
used to obtain standard, and uncertainty-based-regime-specific impulse response functions 
(IRFs) for the state-level coincident indicator following climate risk shocks in the empirical 
results segment contained in Section 3. Finally, Section 4 concludes the paper.      
 

2. Data As far as the behaviour of the real economy is concerned, we measure it through the seasonally-
adjusted coincident indicator (CI) of the 50 US states,3 sourced from the FRED database of the 
Federal Reserve Bank of St. Louis, which in turn is originally created by the Federal Reserve 
Bank of Philadelphia. The corresponding average temperature (in degrees Fahrenheit) data for 
each state is obtained from National Oceanic and Atmospheric Administration (NOAA).4 From 
the raw data, we compute month-on-month growth in temperature (TGrowth), and on which a 
                                                             
2 The only other somewhat related paper is that of Donadelli et al., (2020), wherein the authors, inter alia, reported 
negative impacts of tornado activity on the four census regions (Northeast, Midwest, South and West) of the US, 
but based on annual data. Understandably, a high-frequency analysis like that of ours is more valuable to 
policymakers in designing responses to mitigating climate risks in a timely-manner than those derived from annual 
data-centric findings.   
3  The Coincident Economic Activity Index includes four indicators: nonfarm payroll employment, the 
unemployment rate, average hours worked in manufacturing and wages and salaries. The trend for each state's 
index is set to match the trend for gross state product. 
4 See: https://www.ncdc.noaa.gov/cag/statewide/time-series. 
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stochastic volatility (SV) model of Kastner and Früwirth-Schnatter (2014)5 is fitted to obtain 
the corresponding volatility of state-level temperature (TGrowth_SV), following the suggestion 
of Alessandri and Mumtaz (2021) in terms of modelling climate volatility. 
 
As far as the state-level measure of economic and policy-related uncertainty (SEPU) is 
concerned, we rely on the work of Elkamhi et al., (2020), 6  who basically follow the 
newspapers-based approach of Baker et al., (2016). Elkamhi et al., (2020), using news articles 
from Newslibrary.com,7 search for the number of articles containing words that are related to 
the following categories: “State-level”, “Economic”,“Policy”, and “Uncertainty”. The authors 
count an article as related to state-level EPU (SEPU) when it contains at least one word for 
each of the four categories. Because state newspapers could cover not only local but also 
nationwide news at the same time, Elkamhi et al., (2020) discard articles that contain a word 
reflective of nationwide information (such as ‘congress’, ‘white house’, ‘federal reserve’).8 It 
must be noted that, is the availability of the SEPU data, which defines our period of analysis, 
i.e., March, 1984 to December, 2019. 
 
In the models estimated, we also control for the effect of monetary policy (IR), and hence use 
the effective Federal funds rate (FFR, derived from the FRED database) from start till 
December, 1989, and then from January, 1990 till the end of the sample, we rely on the shadow 
short rate to account for the zero lower bound (ZLB) situations during the global financial crisis 
and the ongoing COVID-19 pandemic. The SSR is based on models of the term-structure, as 
developed by Wu and Xia (2016).9 We work with first-differences of the merged FFR and SSR 
series to capture the changes in monetary policy decisions over the sample period.  
 

3. Methodology The linear model for computing the IRFs following the LPs method of Jordà (2005) can be 
specified as follows: 
 

ܻ,௧ା௦ = ,௦ߙ + ௦ܺ௧ߚ + ∑ ,,௦ܼ,௧ିୀଵୀߛ + ∑ ௧ିୀଵୀܴܫ,௦ߜ + ߳,௧ା௦ , for ݏ = 0,1,2, … (1) ܪ
    
                                                             
5 Letting denote temperature growth by: ݕ = ,ଵݕ) ,ଶݕ … , ௧ݕ :ᇱ, the SV model is specified as(்ݕ  = ݁/ଶ +  ௧ , withߝ
ℎ௧ = ߤ + ߰(ℎ௧ିଵ − (ߤ + ௧ݒߪ , where the i.i.d. standard normal innovations ߝ௧  and ݒ௦  are by assumption 
independent for ݒ, ݏ ∈ {1, … , ܶ}. The unobserved process ℎ = (ℎ, ℎଵ, … , ℎ்) that shows up in the state equation 
is interpreted as a latent time-varying volatility process with initial state distributed according to the stationary 
distribution, i.e., ℎ|ߤ, ߰, ߪ ∼ ,ߤ)ࣨ ଶ/(1ߪ − ߰ଶ)). The non-centered parameterization of the model is given by: 
௧ݕ ∼ ࣨ(0, ߱݁ఙ෩), with ℎ෨௧ = ߰ℎ෨௧ିଵ + ௧ݒ , ௧ݒ ∼ ࣨ(0,1), where ߱ = ݁ఓ. The initial value of ℎ෨|߰ is drawn from 
the stationary distribution of the latent process, i.e., ℎ෨|߰ ∼ ࣨ(0,1/(1 − ߰ଶ)), and ℎ෨௧ = (ℎ௧ −  Detailed .ߪ/(ߤ
estimation results for the stochastic-volatility model can be obtained from the authors upon request. 
6 We would like to thank the authors of this paper for kindly providing us with the state-level uncertainty data. 
7 Newslibrary.com covers around 7,000 newspapers with more than 274 million newspaper articles for 50 US 
states as well as the District of Columbia (DC), Puerto Rico, Guam, U.S. Virgin Islands, and American Samoa. 
8 The reader is referred to Table 1 of Elkamhi et al., (2020) for the complete list of words used to select articles 
according to their methodology. 
9  The SSR data can be downloaded from the website of Professor Jing Cynthia Wu 
at: https://sites.google.com/view/jingcynthiawu/shadow-rates?authuser=0, whereby the framework essentially 
removes the effect that the option to invest in physical currency (at an interest rate of zero) has on yield curves. 
This results in a hypothetical “shadow yield curve” that would exist if the physical currency were not available.  
The process allows one to answer the question: “What policy rate would generate the observed yield curve if the 
policy rate could be taken as negative?” The shadow policy rate generated in this manner, therefore, provides a 
measure of the monetary policy stance after the actual policy rate reaches zero. 
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where ܻ,௧ା௦ represents the coincident indicator of US state i at time t, s is the forecast horizon,10 
,௦ߙ  measures the fixed effect in a panel specification. ߚ௦  captures the responses of the 
coincident indicator at time t + s following an increase in growth in temperature or its SV 
(denoted by ܺ௧) at time t. We standardize both the temperature growth and its volatility for 
each state by dividing with their respective cross-sectional standard deviations, to ensure that 
the effects of these two variables on CI is perfectly comparable in terms of the magnitude.11 
The IRFs are calculated from a sequence of ߚ௦ that are estimated by the ordinary least squares 
(OLS) regression method at each forecast horizon (s). 12  We also control for the 
contemporaneous and lagged effects of the changes in the US monetary policy rate, and the 
state-level TGrowth, its corresponding SV (TGrowth_SV), and SEPU (captured by a vector of 
control variables in ܼ).  
We also study whether the effects of temperature growth or its SV on the state-level coincident 
indicator are regime-dependent, contingent on the (low- and high-) states of SEPU in the panel 
data. Following the approach of Ahmed and Cassou (2016), we expand the linear model 
defined in Equation (1) into a nonlinear threshold model using a dummy variable.  The model 
for computing the nonlinear IRFs can be specified as follows: 
 

ܻ,௧ା௦ = (1 − ,௦ுߙൣ(௧ܦ + ,௦ுߚ ܺ,௧ + ∑ ,,௦ுܼ,௧ିୀଵୀߛ + ∑ ௧ିୀଵୀܴܫ,௦ுߜ ൧ +
,௦௪ߙ௧ൣܦ + ,௦௪ߚ ܺ,௧ + ∑ ,,௦௪ܼ,௧ିୀଵୀߛ + ∑ ௧ିୀଵୀܴܫ,௦௪ߜ ൧ + ߳,௧ା௦, for ݏ = 0,1,2, …  (2) ܪ
 
where ܦ௧ିଵ is a threshold dummy variable which equals 1 if SEPU in US state i is in the low-
regime, and 0 otherwise. Superscripts High and Low denote the high- and low-SEPU regimes, 
respectively, denoted by corresponding values above- and below-median respectively.13 
 

4. Empirical Findings Figure 1 presents the estimated linear IRFs of the state-level coincident indicator for a shock 
to temperature growth over the 1- to 24-month-ahead-forecast horizons in the model specified 
in Equation (1). The figure plots the IRFs calculated by LPs to a 1-unit increase of the 
temperature growth on the future path of the state-level coincident indicator, along with the 95% 
confidence bands calculated based on panel-corrected standard errors. 
 
In line with theory, our result shows that the state-level coincident indicator responds 
negatively in a statistically significant manner to an increase in temperature growth, over the 
entire two-year forecast horizon considered.  
 
 

                                                             
10 The maximum length of forecast horizons H is set to 24 months in this study, corresponding to a 2-year forecast 
horizon. 
11 In terms of the results we obtain below in Section 4 based on the level of CI, the qualitative story remains the 
same if we work with the growth rate of CI. Note that, we worked with the untransformed CI, since standard panel 
data-based unit root tests (namely, Breitung (2000) and Levin et al., (2002)), confirmed stationarity. Complete 
details of all these results are available upon request from the authors. 
12 See Jordà (2005) for detailed discussions about the LPs method. 
13 Note that, due to concerns of endogeneity (Ludvigson et al., 2021), we actually calculate SEPU shock (rather 
than directly using the SEPU variable in the model) by running a fixed effects panel regression of SEPU on its 
lags and also lags of coincident indicators, and then using the residuals of this regression.  
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Figure 1. The US State-Level Effect of Temperature Growth (TGrowth) on the Coincident 
Indicator (CI) 

 
A significant negative effect on state-level economic activity is also registered for a 1-unit 
shock to the SV of temperature growth, again over the entire forecasting horizon, as observed 
from Figure 2. Interestingly, this effect is comparatively similar to that in the case of 
temperature growth.   
 
Figure 2. The US State-Level Effect of SV of Temperature Growth (TGrowth_SV) on the 
Coincident Indicator (CI)  
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Hence, in line with existing international evidence, we find that climate risks, as captured by 
growth in temperature and its volatility, also tend to negatively impact economic activity at the 
regional-, i.e., state-level of the US. 
 
Figure 3. The US State-Level Nonlinear Effect of Temperature Growth (TGrowth) on the 
Coincident Indicator (CI) Contingent on Regimes of the SEPU  

 
Next, in Figure 3, we plot the estimated nonlinear IRFs of the state-level coincident indicator 
following a shock to temperature growth over 24 months. Recall, in this case, we distinguish 
between the high- or low-regimes of the SEPU in individual states, based on the model 
specified in Equation (2). We find that responses of the coincident indicator under the two 
SEPU regimes are very similar to those obtained from the linear model, in terms of its 
behaviour, i.e., we obtain negative and significant impacts, barring the horizon of 15 to 20-
months-ahead in the low-SEPU state. But, more importantly, in accordance with our hypothesis, 
we find that the effect of temperature growth on the coincident indicator is indeed regime-
dependent, with a stronger adverse impact on economic activity under the higher SEPU-regime, 
compared to the same in the lower SEPU-state. In fact, the effect when SEPU is relatively 
higher is essentially double than when SEPU is lower. 
 
As with the effects of growth in temperature on the coincident indicator in the nonlinear case, 
from Figure 4, we observe a stronger significant negative impact on economic activity under 
the high-regime of the SEPU (relative to its lower-value-state, where over horizons 15 to 20-
months-ahead, the effect is insignificant), when we consider an increase in climate risks 
emanating from the volatility of temperature growth. Interestingly, the strength of the negative 
impact on the coincident indicator in the high-SEPU state is basically 10 times stronger than in 
the low-regimes of the SEPU. 
An important result that we need to highlight is that, while the effects of the temperature growth 
increase and its corresponding rise in volatility produce similar sized impact on the coincident 
indicator at the lower-regime of uncertainty, similar to the linear model, the effects are starkly 
different in magnitude during the upper-regime of SEPU. In fact, when uncertainty is high, the 
second-moment impact of temperature growth is about 5 times more than the corresponding 
impact of temperature growth on the real economy.  
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Figure 4. The US State-Level Nonlinear Effect of SV of Temperature Growth 
(TGrowth_SV) on the Coincident Indicator (CI) Contingent on Regimes of the SEPU  

 
Overall, taking into account the IRFs from the nonlinear model, we provide strong evidence in 
favour of our hypothesis that, in general, relatively higher values of economic and policy-
related uncertainty would tend to enhance the adverse effects of climate risks on economic 
activity, by exaggerating the demand- and supply-side transmission channels through which 
temperature growth and its volatility affect the real economy.     

5. Conclusion In this paper, we analyse the effects of climate risks, i.e., growth in temperature and its volatility 
on the economic activity of the 50 states of the US, over the monthly period of 1984 to 2019, 
conditional on the high- and low-regimes of corresponding state-level economic and policy-
related uncertainty. Our results, based on linear and nonlinear models of local projections, show 
that, while climate risks negatively impact economic activity, these effects are immensely 
magnified when uncertainty is relatively high. This is because, uncertainty leads to 
enhancement of the effects of the demand- and supply-side channels through which climate 
risks tend to impact economic activity. Furthermore, while effects of temperature growth and 
its volatility on economic activity under the linear model and in the lower uncertainty-regime 
are of similar magnitude, the effect is five folds higher for a temperature growth volatility 
increase relative to a similar-sized temperature growth rise under the upper-regime of the 
nonlinear model.  Our findings imply that, while policies aiming at reducing  climate change 
will improve economic activity, the size of such positive effects would be contingent on the 
level of the underlying uncertainty. In other words, policymakers would need to pursue - 
complementary and transparent policies, in the sense that such measures would need to ensure 
simultaneous reduction of climate risks and economic- and policy-based uncertainty, to 
produce the desired real effects. In addition, stronger expansionary policy responses are 
required when uncertainty is relatively high, and economic contraction originates due to a rise 
in the volatility of temperature growth, compared to the case when growth in temperature 
increases by a similar magnitude. 
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