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Introduction Scientists Voice Experiment Conclusion Example Motivation This Paper

Motivation

> In "post-truth" era the difference bw facts and opinions shrinks
(Bursztyn et al. 2023, McIntyre 2018)

> Trust in science crucial for informed decision-making and effective public policy

> COVID-19 highlights influence of scientific expertise on public health responses
(Algan et al. 2021, Calónico et al. 2023)

> Doubts about climate change hinder progress toward environmental goals
(Druckman & McGrath 2019)

> Erosion of trust in scientific authority observed in recent years
(Nichols 2017)

> Polarization exacerbates concerns w conservatives lowering trust in scientists
(Azevedo & Jost 2021, Funk et al. 2020, Li & Qian 2022, Mede 2022)
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Research Questions

Can scientists public political expression polarize audience perceptions?

1. How vocal are scientists around political issues online?

2. Does scientists’ online political expression impact public perceptions?

Study two common concepts of political polarization (Barberá 2020)
- ideological polarization (divergence in expressed political views)
- affective polarization (dislike for the partisan outgroup)
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This paper

Uses descriptive evidence (Altmetrics and X) and online experiment (1700 US)

1 Academics express political views and are particularly vocal on divisive issues
44% US academics vs 7% random users express political opinions on X

2 Large credibility penalty for scientists engaging in political discourse
Strong Rep scientists are 40% less credible than neutral scientists

3 Salient research content and pure political signal both impact credibility

Examples of Political Tweets Contribution
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Data

> Dataset from network of ≈ 98K US academics on X (from Garg & Fetzer 2024)

> Mongeon et al. (2023) links researchers’ OpenAlex and X accounts with high accuracy

> OpenAlex data includes publications, citations, affiliations, co-authors, and fields

> X data on academics from Jan 2016 to Dec 2022 (detailed in Garg & Fetzer 2024)

> Include tweets, retweets, quotes, and replies, total 115M posts
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Methodology (Step 1)

Topic detection Stance detection Ideological polarization

Dynamic keyword dictionaries
∀ topic using GPT-4

topics: Abortion, Climate
Immigration, Race, Redistribution

Topic Detection
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Methodology (Step 2)

Topic detection Stance detection Ideological polarization

Pro/anti/neutral stances

∀ tweet x topic using GPT-3.5

Stance Detection
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Methodology (Step 3)

Topic detection Stance detection Ideological polarization

Net pro stance Su

∀ user x topic x time period

Ideological Polarization
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Scientists are more vocal than users, especially on climate and race

By Gender and Field
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Scientists appear ideologically polarized across topics

Density Net-pro over Time
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Introduction Scientists Voice Experiment Conclusion Data & Methods Scientists voice

Scientists disagree more about race, less on other topics

By Gender and Field
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Can political expression
affect scientists’ credibility?



Introduction Scientists Voice Experiment Conclusion Design Results Heterogeneity Mechanism Robustness

Experimental design

> Conjoint experiment (eg. Hainmueller et al. 2015)

> 1700 US respondents recruited on Prolific (eg. Enke et al. 2023) Representativeness

> 5 synthetic vignettes varying: gender, research field, seniority, university Attributes

> Political affiliation: description resembling X biographies and a recent post
categorized from Strongly Democrat to Strongly Republican

> Mechanism task assigns respondents to 1 of 4 groups
CPassive: NO politically salient research + NO political signal
CActive: politically salient research + NO political signal
TLeft (Right): politically salient research + Left (Right) political signal (from X bio)

Vignettes task 1 Validation Perceived Leaning Vignettes task 2
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Introduction Scientists Voice Experiment Conclusion Design Results Heterogeneity Mechanism Robustness

Large credibility penalty for scientists who display political affiliations

Note: Coefficients of regressing scientists’ attributes on respondents’ perceived credibility or willingness to read from scientists. Standard errors
clustered at the individual. Scientists’ leaning range from "Strongly Republican" to "Strongly Democrat", with "Neutral" as excluded category. Other
attributes include scientist affiliation, field of research, seniority and gender. (N = 1990, 1118 Dem/Lean Dem, 855 Rep/Lean Rep, 17 Other.)

→ Strong Rep and Strong Dem scientists are -40% and -10% credible than neutral (-40% vs -10% read)
→ Moderate Rep and Moderate Dem scientists are -9% and -7% credible than neutral (-9% vs -5% read)
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Introduction Scientists Voice Experiment Conclusion Design Results Heterogeneity Mechanism Robustness

Affective Polarization: penalty varies by audience partisanship

→ Dem/lean Dem penalize Rep scientists (Strong -60-64%, Moderate -20-22%)
→ Rep/lean Rep penalize Dem scientists (Moderate -17-18%, Strong -26-29%)

→ Reward Moderate Rep (+7-11%) and penalize Strong Rep (-8-5%) less than Dem scientists Full model
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Introduction Scientists Voice Experiment Conclusion Design Results Heterogeneity Mechanism Robustness

Separating the effect of pure political signal from salient research

→ In-group respondents (politically aligned with signal) perceive better outcomes than out-group respondents
Group averages by respondents leaning
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Introduction Scientists Voice Experiment Conclusion Design Results Heterogeneity Mechanism Robustness

Robustness and more

> Carryover effects Estimates by profile order

> Exclude those who spent < 1min on survey No speeders

> Replication main results Main experiment

> Main result on sample of journalists

> Impact of other attributes by profile type Credibility Credibile Research WTR

> Correcting for hetheroskedasticity Robust Std Err

> Multiple Hyphotesis Testing (Benjamini et al. 2006) Multiple Hyphotesis Testing

> Validating political signals (bio + tweet) Validation Perceived Leaning

> Survey of scientists Beliefs Credibility Penalty Expression Norm Expression Consequences
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Introduction Scientists Voice Experiment Conclusion

Take aways

We find...

> Social media is increasingly important for scientific dissemination

> But scientists also express diverging political views online (Ideological polarization)

> And this online political expression harms scientists’ perceived credibility

> With strong effects against partisan out-group (Affective polarization)

Which implies...

> Polarizing views on science highlight a possible trade-off bw visibility and credibility

> Political expression risks undermining trust and exacerbating polarization

> Need to carefully balance research dissemination and political expression online
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Appendix References

Contribution

> Observational literature measuring polarization
Alesina et al. (2020), Boxell et al. (2024), Colleoni et al. (2014), Flaxman et al. (2016), Gentzkow
& Shapiro (2011), Iyengar et al. (2019), Stewart et al. (2019)

→ We measure political voice of scientists using social media posts

> Experimental literature on polarization
Chopra et al. (2024), Huddy et al. (2015), Levy (2021), Mosleh et al. (2021)

→ We measure impact of scientists’ voice on their perceived credibility

> Literature on scientists perceptions and scientific communication
Blastland et al. (2020), Garg & Fetzer (2024), Kotcher et al. (2017), Petersen et al. (2021), Van
Der Bles et al. (2019, 2020), Zhang (2023)

→ Illuminate on balance bw research dissemination and online expression

This paper
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Appendix References

Increasing presence of scientific publications on Twitter

Back
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Appendix References

Topic detection

1 Dynamic keyword dictionaries: (Garg & Fetzer 2024, Garg & Martin 2024)

- Abortion Rights, Climate Action, Immigration, Racism, Income Redistribution

- Prompt GPT-4 (5 topics x 3 ngrams x 7 years x 2 vernacular types)
"Provide a list of <ngrams> related to the topic of <topic> in the year <year>.
<twitter fine tuning>. Provide the <ngrams> as a comma-separated list."

- Twitter Fine Tuning is "Focus on language, phrases, or hashtags commonly
used on Twitter" or empty

2 Keywords applied to all posts: tweet ∈ topic if contains keyword of topic dictionary

3 Analysis limited to topical tweets and their authors (6M tweets, 52K scientists)
Type of Tweets Ngram Examples Back
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Appendix References

Stance detection

4 Stance detection: (Garg & Fetzer 2024)

- Tweets categorized into four stances: pro, anti, neutral, or unrelated.

- Prompt GPT-3.5: "Classify this tweet’s stance towards <topic> as
‘pro’, ‘anti’, ‘neutral’, or ‘unrelated’. Tweet: <tweet>."

- Sampling procedure to reduce costs of labeling (up to 3 tweets per author-topic)

- Validated against 40,000 human-coded labels with avg. F-score 86.4

- Comparisons with opinion polls in Garg & Fetzer (2024), Garg & Martin (2024)

Statistics on Tweets Statistics on Scientists Evaluation GPT Examples Back
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Appendix References

Measure of ideological polarization

5 Ideological polarization:

- Analysis involves calculating net pro stance for each user,
offering insights into overall sentiment towards a topic

Sum =
proum − antium

proum + antium + neutralum

- Measure ranging from -1 (completely anti) to 1 (completely pro)

- V ar(Sum) across all users reflects disagreement in political voice on a topic

Back
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Appendix References

Example ngrams for topic detection

Back
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Appendix References

Tweets mentioning politicians, research papers, and salient topics

Back
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Appendix References

Summary statistics (Tweet level)
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Appendix References

Summary statistics (Scientist level)

Back
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Appendix References

Evaluation metrics: GPT 3.5 Turbo

Back
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Appendix References

Climate
- Anti: The concept of global warming was created by and for the Chinese in order to make U.S.

manufacturing non-competitive.

- Pro: Donald Trump believes climate change is a hoax. Donald Trump is an idiot.

Abortion
- Pro: A pregnant mother in Poland, where abortion is mostly outlawed, went to the hospital in need of a

life-saving abortion. Doctors refused and she died. In Bolivia, Catholic leaders are coercing a pregnant child
into giving birth. This is what prolife laws do.

- Anti: Let’s Make Abortion UNTHINKABLE! Who’s with me? prolife unborn bhfyp alllivesmatter hope
endabortion prolifegen

Abortion + Science
- Anti: In the wake of a gene-editing experiment gone wrong, the president of the National Catholic Bioethics

Center said that the Church must stand firm against the unborn being "sacrificed on the altar of scientific
research."

- Pro: Texas’ latest abortion ban, SB8, gives people the right to sue those who provide or help others get an
abortion after 6 weeks. Bans like these are not based in science and the consequences could potentially be
disastrous. Here’s what our research says:

Back ’this paper’ Back ’methods’
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Appendix References

Density of net-pro stance across topics and time

Back
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Appendix References

Small differences in expression by gender and discipline

Back
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Appendix References

Small differences in variance by gender and discipline

Back
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Appendix References

Representativeness

Population Sample
Income: < 30,000 0.51 0.17
Income: 30-59,999 0.26 0.25
Income: 60-99,999 0.14 0.27
Income: 100-149,999 0.06 0.19
Income: > 149,999 0.04 0.11
Age: 18-34 0.30 0.29
Age: 35-44 0.16 0.18
Age: 45-54 0.16 0.16
Age: 55-64 0.17 0.24
Age: > 64 0.21 0.13
Ethnicity: White 0.7 0.73
Edu: Up to Highschool 0.39 0.26
Edu: Some college 0.22 0.20
Edu: Bachelor or Associate 0.28 0.35
Edu: Masters or above 0.11 0.19
Region: West 0.24 0.17
Region: North-east 0.17 0.22
Region: South 0.38 0.40
Region: Mid-west 0.21 0.21
Male 0.49 0.49
Republican 0.28 0.28
Democrat 0.32 0.31

Back
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Appendix References

Summary of attributes

Attributes Categories Options

Gender Male, Female We specify the gender

Research Field Social Sciences, STEM, Medicine, and
Humanities

We mention: Economics, Material Engineering, Mathematics, Medicine,
American Literature

Seniority Senior, Junior We mention that scientists are: Full Professor or Assistant Professor

University Affiliation High-ranked, Low-ranked We use affiliations to Harvard University, Berkeley, University of
Chicago, Iowa State, University of Connecticut

Twitter Bio and Twitter Post Strongly Dem, Moderately Dem,
Strongly Rep, Moderately Rep, Neu-
tral

Academic. Human rights advocate [rainbow and fist emoji] - "Greta
has been arrested for the first time. This signals a moment for more
of us to rise and face arrest if necessary, for the future of our planet.
Such actions have the power to change the course of events.",

Academic. Friend of the environment [wave emoji] - "Researchers
at Exxon precisely forecasted the extent of global warming resulting
from fossil fuel combustion in studies starting in 1970s, according
to a research paper. Despite this, the company cast skepticism on
the findings, contributing to a postponement of government climate
initiatives.",

Academic. Republican. #biblebelieve [American flag] - "For those
advocating for civil rights and pro-life values (which are inherently
linked), take note. There are individuals who have courageously high-
lighted the inhumane procedures that proponents of abortion, such as
@JoeBiden, are pushing for nationwide acceptance and funding. This
is unequivocally unacceptable",

Academic. American. Sharing research, family and community stories
[house and handshake emoji] - "I’m not inclined towards the right
or the left, but the excessive wokeness of the left has nudged me
to the right. Interestingly, when right-wing extremists commit mass
shootings against minorities, it doesn’t compel me to shift towards the
left. Somehow, that’s not considered ’too far.’",

Academic. Discovering truths of the world [books emoji] - "On De-
cember 5, 1932, Albert Einstein received a visa, enabling his journey
to the United States. OnThisDay."

Back
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Validation of political affiliation attributes

Back Back robust
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Back
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Appendix References

Separating the effect of salient research from pure political signal

→ Dem/lean Dem: Higher outcomes with politically aligned research; left signal improves, right signal reduces
→ Rep/lean Rep: Lower outcomes with misaligned research; left signal reduces more than right

Dem regressions Rep regessions Full sample Back
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Scientists’ Beliefs about Credibility Penalty

Back
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Appendix References

Scientists’ beliefs around academics publicly expressing political views

A. Scientists Should Avoid B. How many Scientists Agree on
Expressing Political Opinions Avoiding to Express Political Opinions

Back
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Appendix References

Scientists’ perception on consequences of public political expression

A. Have Hesitated to Express B. Perceived (Net) Consequences of
Political Opinions Expressing Political Opinions

Back
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Appendix References

Large credibility penalty (full model)

Note: Regressions of scientists’ attributes on perceived credibility or willingness to read. SE at individual level. Political leaning: "Strongly Republican,"
"Moderately Republican," "Strongly Democrat," or "Moderately Democrat," excluding "Neutral." High Affiliation: top institutions like Harvard, UC
Berkeley, or Chicago, versus others like Arkansas or Connecticut. Research fields: Medicine, Mathematics, Engineering, and Economics, excluding
Literature. "Full professor" coded as one, "assistant professors" as zero. "Male" coded as one for male scientists. Controls: age, gender, income,
ethnicity, education, employment status, religion, region, and political leaning. Sample: 1740, with 940 Dem/Lean Dem, 745 Rep/Lean Rep, 19 Other.

Back
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Carryover effects on scientists’ credibility and willingness to read

Back
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Effect of scientists’ attributes excluding speeders (N = 1431)

Back
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Appendix References

Regression with Robust standard errors

Dependent variable:

Credibility Cred Research Read Credibility Cred Research Read

(1) (2) (3) (4) (5) (6)

Male −0.067 −0.068 −0.097 −0.067 −0.068 −0.097
(0.054) (0.054) (0.066) (0.054) (0.054) (0.066)

Full Professor 0.147∗∗∗ 0.165∗∗∗ 0.124∗ 0.147∗∗∗ 0.165∗∗∗ 0.124∗

(0.054) (0.054) (0.066) (0.055) (0.055) (0.066)
Economics 0.185∗∗ 0.184∗∗ 0.226∗∗ 0.185∗∗ 0.184∗∗ 0.226∗∗

(0.086) (0.086) (0.103) (0.086) (0.086) (0.103)
Engineering 0.202∗∗ 0.172∗∗ 0.072 0.202∗∗ 0.172∗∗ 0.072

(0.086) (0.086) (0.104) (0.088) (0.087) (0.105)
Mathematics 0.246∗∗∗ 0.272∗∗∗ 0.092 0.246∗∗∗ 0.272∗∗∗ 0.092

(0.086) (0.086) (0.104) (0.085) (0.086) (0.104)
Medicine 0.299∗∗∗ 0.279∗∗∗ 0.290∗∗∗ 0.299∗∗∗ 0.279∗∗∗ 0.290∗∗∗

(0.086) (0.086) (0.104) (0.086) (0.087) (0.103)
High Affiliation 0.142∗∗ 0.120∗∗ 0.128∗ 0.142∗∗ 0.120∗∗ 0.128∗

(0.056) (0.056) (0.067) (0.056) (0.056) (0.067)
Moderately Dem −0.505∗∗∗ −0.483∗∗∗ −0.293∗∗∗ −0.505∗∗∗ −0.483∗∗∗ −0.293∗∗∗

(0.086) (0.086) (0.104) (0.073) (0.073) (0.094)
Moderately Rep −0.660∗∗∗ −0.617∗∗∗ −0.521∗∗∗ −0.660∗∗∗ −0.617∗∗∗ −0.521∗∗∗

(0.086) (0.086) (0.104) (0.076) (0.075) (0.095)
Strong Rep −2.828∗∗∗ −2.698∗∗∗ −2.708∗∗∗ −2.828∗∗∗ −2.698∗∗∗ −2.708∗∗∗

(0.086) (0.086) (0.104) (0.089) (0.088) (0.105)
Strongly Dem −0.788∗∗∗ −0.715∗∗∗ −0.694∗∗∗ −0.788∗∗∗ −0.715∗∗∗ −0.694∗∗∗

(0.086) (0.086) (0.104) (0.081) (0.081) (0.100)
Constant 6.994∗∗∗ 6.876∗∗∗ 6.243∗∗∗ 6.994∗∗∗ 6.876∗∗∗ 6.243∗∗∗

(0.096) (0.095) (0.115) (0.088) (0.089) (0.108)

Observations 8,520 8,520 8,520 8,520 8,520 8,520

Notes: Coefficients are obtained by regressing scientists’ characteristics on respondents’ perceived credibility, perceived credibility of scientists’ research
and likelihood of reading from similar scientists. All the standard errors are clustered at the individual level and are robust to heteroskedasticity in
Columns 4 to 6.

Back
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Regression with Multiple Hypothesis Testing correction

Dependent variable:

Credibility Cred.Research Read Credibility Cred.Research Read

(1) (2) (3) (4) (5) (6)

Male −0.067 −0.068 −0.097 −0.067 −0.068 −0.097
(0.054) (0.054) (0.066) (0.054) (0.054) (0.066)

Full Professor 0.147∗∗∗ 0.165∗∗∗ 0.124∗ 0.147∗∗ 0.165∗∗∗ 0.124∗

(0.054) (0.054) (0.066) (0.055) (0.055) (0.066)
Economics 0.185∗∗ 0.184∗∗ 0.226∗∗ 0.185∗∗ 0.184∗∗ 0.226∗∗

(0.086) (0.086) (0.103) (0.086) (0.086) (0.103)
Engineering 0.202∗∗ 0.172∗∗ 0.072 0.202∗∗ 0.172∗∗ 0.072

(0.086) (0.086) (0.104) (0.088) (0.087) (0.105)
Mathematics 0.246∗∗∗ 0.272∗∗∗ 0.092 0.246∗∗∗ 0.272∗∗∗ 0.092

(0.086) (0.086) (0.104) (0.085) (0.086) (0.104)
Medicine 0.299∗∗∗ 0.279∗∗∗ 0.290∗∗∗ 0.299∗∗∗ 0.279∗∗∗ 0.290∗∗∗

(0.086) (0.086) (0.104) (0.086) (0.087) (0.103)
High Affiliation 0.142∗∗ 0.120∗∗ 0.128∗ 0.142∗∗ 0.120∗∗ 0.128∗

(0.056) (0.056) (0.067) (0.056) (0.056) (0.067)
Moderately Dem −0.505∗∗∗ −0.483∗∗∗ −0.293∗∗∗ −0.505∗∗∗ −0.483∗∗∗ −0.293∗∗∗

(0.086) (0.086) (0.104) (0.073) (0.073) (0.094)
Moderately Rep −0.660∗∗∗ −0.617∗∗∗ −0.521∗∗∗ −0.660∗∗∗ −0.617∗∗∗ −0.521∗∗∗

(0.086) (0.086) (0.104) (0.076) (0.075) (0.095)
Strong Rep −2.828∗∗∗ −2.698∗∗∗ −2.708∗∗∗ −2.828∗∗∗ −2.698∗∗∗ −2.708∗∗∗

(0.086) (0.086) (0.104) (0.089) (0.088) (0.105)
Strongly Dem −0.788∗∗∗ −0.715∗∗∗ −0.694∗∗∗ −0.788∗∗∗ −0.715∗∗∗ −0.694∗∗∗

(0.086) (0.086) (0.104) (0.081) (0.081) (0.100)
Constant 6.994∗∗∗ 6.876∗∗∗ 6.243∗∗∗ 6.994∗∗∗ 6.876∗∗∗ 6.243∗∗∗

(0.096) (0.095) (0.115) (0.088) (0.089) (0.108)

Observations 8,520 8,520 8,520 8,520 8,520 8,520

Notes: Coefficients are obtained by regressing scientists’ characteristics on respondents’ perceived credibility, perceived credibility of scientists’ research and likelihood
of reading from similar scientists. The p-values in Columns 4, 5 and 6 are corrected for Multiple Hypothesis Testing using FDR procedure.
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Scientists’ profile credibility by scientists’ political affiliation

Credibility of Scientists by Profile Type:

Strong Rep Moderate Rep Neutral Moderate Dem Strong Dem

Male −0.060 −0.165 −0.014 −0.116 0.021
(0.150) (0.117) (0.097) (0.110) (0.129)

Full Professor −0.024 0.214∗ 0.313∗∗∗ −0.045 0.267∗∗

(0.150) (0.117) (0.097) (0.110) (0.129)
Economics 0.356 0.288 −0.029 0.410∗∗ −0.105

(0.234) (0.187) (0.154) (0.171) (0.201)
Engineering 0.247 0.141 0.075 0.384∗∗ 0.168

(0.230) (0.189) (0.151) (0.172) (0.212)
Mathematics 0.094 0.362∗∗ 0.007 0.549∗∗∗ 0.169

(0.238) (0.184) (0.153) (0.174) (0.204)
Medicine 0.084 −0.004 0.134 0.871∗∗∗ 0.389∗

(0.230) (0.189) (0.154) (0.170) (0.208)
High Affiliation 0.254∗ 0.274∗∗ 0.088 0.337∗∗∗ −0.229∗

(0.152) (0.120) (0.099) (0.111) (0.132)
Constant 4.210∗∗∗ 6.294∗∗∗ 7.067∗∗∗ 6.244∗∗∗ 6.396∗∗∗

(0.208) (0.174) (0.139) (0.156) (0.189)

Observations 1,704 1,704 1,704 1,704 1,704
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Scientists’ research credibility by scientists’ political affiliation

Credibility of Scientists Research by Profile Type:

Strong Rep Moderate Rep Neutral Moderate Dem Strong Dem

Male −0.123 −0.154 −0.031 −0.127 0.093
(0.149) (0.116) (0.096) (0.111) (0.130)

Full Professor −0.007 0.288∗∗ 0.271∗∗∗ 0.047 0.218∗

(0.149) (0.116) (0.096) (0.111) (0.129)
Economics 0.331 0.297 0.090 0.326∗ −0.147

(0.233) (0.186) (0.153) (0.173) (0.202)
Engineering 0.216 0.075 0.002 0.411∗∗ 0.156

(0.230) (0.188) (0.150) (0.174) (0.213)
Mathematics 0.289 0.341∗ 0.033 0.539∗∗∗ 0.120

(0.238) (0.182) (0.152) (0.176) (0.204)
Medicine 0.175 −0.037 0.179 0.747∗∗∗ 0.289

(0.230) (0.187) (0.152) (0.172) (0.209)
High Affiliation 0.169 0.274∗∗ 0.109 0.330∗∗∗ −0.276∗∗

(0.152) (0.119) (0.098) (0.113) (0.132)
Constant 4.241∗∗∗ 6.186∗∗∗ 6.933∗∗∗ 6.138∗∗∗ 6.399∗∗∗

(0.207) (0.173) (0.138) (0.157) (0.189)

Observations 1,704 1,704 1,704 1,704 1,704
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Willingness to read by scientists’ political affiliation

Willingness to Read Opinion of Scientists by Profile Type:

Strong Rep Moderate Rep Neutral Moderate Dem Strong Dem

Male 0.073 −0.196 −0.317∗∗ −0.122 0.068
(0.168) (0.144) (0.126) (0.139) (0.155)

Full Professor −0.035 0.213 0.162 0.012 0.270∗

(0.168) (0.144) (0.126) (0.139) (0.155)
Economics 0.223 0.325 −0.033 0.411∗ 0.194

(0.262) (0.230) (0.200) (0.217) (0.242)
Engineering 0.033 −0.023 −0.001 0.009 0.372

(0.258) (0.233) (0.197) (0.218) (0.256)
Mathematics −0.133 0.169 0.012 0.276 0.094

(0.268) (0.226) (0.199) (0.220) (0.245)
Medicine 0.116 0.043 0.061 0.676∗∗∗ 0.531∗∗

(0.258) (0.232) (0.200) (0.216) (0.251)
High Affiliation 0.196 0.244∗ 0.097 0.301∗∗ −0.182

(0.171) (0.148) (0.129) (0.141) (0.158)
Constant 3.575∗∗∗ 5.684∗∗∗ 6.485∗∗∗ 5.781∗∗∗ 5.488∗∗∗

(0.233) (0.214) (0.181) (0.197) (0.227)

Observations 1,704 1,704 1,704 1,704 1,704
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Replication (N=1990)

A. Base Model B. Heterogeneity by Respondents’ Leaning

Note: N = 1990, 1118 Dem. or Lean Dem., 855 Rep. or Lean Rep., 17 Other leaning.
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Mechanism: Separating the effect of salient research from pure political signal

Dependent variable:

Credible Willing Yes Trust in

Credibility Research to Read Newsletter Science Idx

Active Control 0.010 −0.120 1.049∗∗∗ 0.089∗∗ 0.004
(0.193) (0.194) (0.239) (0.040) (0.060)

Treatment Left −0.096 −0.285∗ 0.972∗∗∗ 0.062∗ 0.045
(0.166) (0.167) (0.207) (0.035) (0.052)

Treatment Right −0.121 −0.370∗∗ 0.978∗∗∗ 0.039 0.056
(0.167) (0.168) (0.207) (0.035) (0.052)

Male 0.048 0.032 −0.123 −0.030 0.021
(0.111) (0.112) (0.138) (0.023) (0.034)

Full Professor 0.230∗∗ 0.239∗∗ 0.375∗∗∗ 0.047∗∗ 0.052
(0.111) (0.111) (0.137) (0.023) (0.034)

High Affiliation −0.044 −0.017 0.063 −0.008 −0.090∗∗

(0.113) (0.114) (0.141) (0.024) (0.035)
Constant 7.335∗∗∗ 8.082∗∗∗ 5.382∗∗∗ 0.622∗∗∗ 4.067∗∗∗

(0.974) (0.979) (1.210) (0.203) (0.301)

Observations 1,704 1,704 1,704 1,704 1,704
Controls X X X X X
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Mechanism: Separating effect of salient research from pure political signal
(Democrats)

Panel A: Democrats or Leaning Democrat

Credible Willing Yes Trust in
Credibility Research to Read Newsletter Science Idx

Active Control 0.646∗∗∗ 0.489∗∗ 1.730∗∗∗ 0.081 −0.056
(0.232) (0.231) (0.304) (0.055) (0.074)

Treatment Left 0.773∗∗∗ 0.594∗∗∗ 1.985∗∗∗ 0.110∗∗ 0.048
(0.205) (0.205) (0.269) (0.049) (0.066)

Treatment Right 0.071 −0.071 1.571∗∗∗ 0.055 0.018
(0.205) (0.204) (0.269) (0.049) (0.066)

Male −0.097 −0.131 −0.233 −0.033 0.063
(0.136) (0.136) (0.178) (0.033) (0.043)

Full Professor 0.077 0.097 0.231 0.062∗ 0.022
(0.134) (0.134) (0.176) (0.032) (0.043)

High Affiliation −0.049 −0.082 −0.140 −0.023 −0.092∗∗

(0.138) (0.138) (0.181) (0.033) (0.044)
Constant 7.496∗∗∗ 7.781∗∗∗ 3.577∗ 0.015 3.285∗∗∗

(1.637) (1.632) (2.146) (0.392) (0.523)

Observations 940 940 940 940 940
Controls X X X X X
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Mechanism: Separating effect of salient research from pure political signal
(Republicans)

Panel B: Republican or Leaning Republican

Credible Willing Yes Trust in
Credibility Research to Read Newsletter Science Idx

Active Control −0.818∗∗ −0.879∗∗∗ 0.229 0.084 0.073
(0.328) (0.335) (0.386) (0.060) (0.100)

Treatment Left −1.152∗∗∗ −1.337∗∗∗ −0.335 −0.034 0.026
(0.279) (0.285) (0.328) (0.051) (0.085)

Treatment Right −0.479∗ −0.825∗∗∗ 0.103 −0.003 0.080
(0.278) (0.284) (0.328) (0.051) (0.085)

Male 0.104 0.102 −0.074 −0.038 −0.049
(0.185) (0.189) (0.218) (0.034) (0.056)

Full Professor 0.354∗ 0.350∗ 0.516∗∗ 0.034 0.088
(0.186) (0.190) (0.219) (0.034) (0.056)

High Affiliation −0.138 −0.007 0.201 0.008 −0.098∗

(0.191) (0.195) (0.225) (0.035) (0.058)
Constant 6.780∗∗∗ 7.484∗∗∗ 6.058∗∗∗ 0.897∗∗∗ 3.711∗∗∗

(1.384) (1.414) (1.629) (0.251) (0.420)

Observations 745 745 745 745 745
Controls X X X X X
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