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behavioral interventions and environmental behavior

Direct route: Change individual behaviors (e.g. green electricity tariffs, public transport, meat
consumption etc.) → Recent studies cast doubt on consistency and external validity (e.g., Byerly et
al. 2018; DellaVigna & Linos, 2022; Bruns et al. 2025; Kaiser et al. 2025).

Indirect route: Application to increase public support for climate policies—especially carbon
pricing, which is economically efficient but under‐adopted.

Reality check: Only ∼25 % of global emissions are priced—and typically below social‐cost levels
(IPCC, 2022; World Bank Group, 2024).

Measurement gap: Evidence on policy support—as opposed to pro-environmental behavior—is
scarce. Mostly hypotheticals or self-reports→ cheap‐talk, social-desirability bias, and the
intention–action gap (Kormos & Gifford, 2014; Vlasceanu et al. 2024; Dechezleprêtre et al. 2025).
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#manydesignscarbon
methodological reflection

Stand‐alone studies→ Noisy single draws from a large population + researcher “degrees of
freedom” in population, design, and analyses (Wicherts et al. 2016; Landy et al. 2020; Simonsohn
et al. 2020; Menkveld et al. 2023; Holzmeister et al. 2024).

As researchers we are often guided by prior choices→ path dependence that narrows perspective.

Meta‐analytic heterogeneity reflects many factors—not just study design→ less precise
meta-effects. At the same time, meta‐analyses are prone to publication bias, driven by academic
incentives→ post hoc correction is only approximate.

→ Important policy question→ demands methodology that also prevents p-hacking, and
HARKing.
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#manydesignscarbon
open question

Can behavioral interventions systematically impact real-world support for a price on
carbon?

Applying a new paradigm in the field: an open, fully transparent crowd‐science initiative.

→ 55 independent randomized controlled trials by international research teams only differing in
experimental conditions and support measures→ in one study—all addressing the same research
question to accelerate knowledge generation by years!
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#manydesignscarbon
procedure

May 2024

PAP +
Launch
Open Call

Jun 2024

Notification

Sep 2024

Pre-reg. &
Survey-A

Dec 2024

Software &
Survey-B

Jan 2025

Pilot

Feb 2025

Start data
collection

April 2025

End data
collection

and Analyses

• Registration of a comprehensive pre-analysis plan including detailed protocols, planned
analyses, and extensive power simulations hosted on OSF: all raw datasets, all analyses
scripts, software packages, team proposals, and IRB-approvals.

• Project website launched: www.manydesignscarbon.online.

• Open call: Distributed via LinkedIn and society mailing lists (Economics, Finance,
Behavioral Science) to recruit research teams (up to 2 members each).
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• In total, 135 research teams (RTs) applied to take part in the project.

• In a first step, we randomly selected 42 RTs (pre-registered STATA script).
• Additionally, we added 25 randomly selected RTs (Addendum to the PAP), which
could signal to fund themselves (funding was no pre-requisite).

• Of the 67 selected teams, 55 completed the full study protocol and were included
in the data analysis.
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procedure

Figure 1: Distribution of research fields the final 55 RTs hold their PhDs in. 7
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procedure

Figure 2: Geographical locations among the final 55 RTs. 8
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• Pre-Registration: All teams submitted a standardized pre-registration detailing their
experimental conditions and outcome measures. The PIs validated the designs including
the outcome measures→ real-world impact.

• Survey A (Self-Assessment): Immediately after pre-registration, teams predicted the
standardized effect size (Cohen’s d) of their own design.
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• Software: RTs programmed the software with one control and one intervention condition
(oTree or Qualtrics). Common survey battery implemented across all studies to ensure
consistency (Vlasceanu et al. 2024; Dechezleprêtre et al. 2025).

• Survey B (Peer-Assessment): Each team anonymously evaluated 10 randomly assigned
peer designs, including the intervention’s (i) predicted effect, (ii) informativeness, and
(iii) its categories.
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• Main Launch: Over 20,000 U.S. adults via Prolific—randomly assigned to each of the 110
conditions (55 designs × 2 arms, n = 175 participants per arm) over 6 weeks.
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#manydesignscarbon
procedure Examples

Figure 3: Peer (Survey B) + AI classification of types of interventions across teams (registered prompt with GPT-4o).
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• Uniform estimation—For each study i = 1, . . . , 55 (with Ni participants), estimate the
univariate OLS

Yij = αi + βi Tij + εij, j = 1, . . . ,Ni.

• Standardized synthesis—convert each βi to Cohen’s di (with CIs) and pool via a random-
effects meta-analysis.
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#manydesignscarbon
main results (pre-registered) Open Dynamic Version

#ManyDesignsCarbon Main Results (Random Effects Meta Analysis)
Self-assessed effect Peer-assessed effect Observed effect Stated effect Observed support (meta) Stated support (meta)
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τ = 0.12 (95 % CI 0.06–0.22) • I² = 37% • Q = 48.2 (p = 0.031) τ = 0.45 (95 % CI 0.08–0.29) • I² = 45% • Q = 56.7 (p = 0.018)

Self-assessed Peer-assessed Observed Stated Connectors
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#manydesignscarbon
summary meta-analytical effect sizes (pre-registered)
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Figure 4: Panel (a): Meta-analytical results across primary support outcomes. Panel (b): Meta-analytical
results across secondary outcomes.
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#manydesignscarbon
meta regressions with moderator variables (pre-registered)
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Figure 5: Results of meta-regressions exploring potential pre-registered peer assessed moderators. 16



#manydesignscarbon
conclusion

• First Many-Designs study on the effect of behavioral interventions on support for carbon
pricing (observed & stated).

• Meta-analysis finds a very small but robust positive effect.

• small-to-medium heterogeneity across designs underscores certain context-dependence (see
prediction intervals).

• Interventions can backfire—they’re not always “innocent”.

• Peer assessed moderators cannot explain results.

• Teams overestimated both their own and others’ effects before data collection.
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Questions & Discussion

Your feedback helps us improve!
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Supplement: Power Simulations Back to Procedure

Figure 6: Power simulation for a random‐effects meta‐analysis, including sensitivity to between‐study
heterogeneity and intra-cluster correlation (ICC).



Supplement: Examples of Studies Back to Procedure

AZK26 (AI): 4-min AI chatbot on carbon tax vs open-topic chatbot; outcome: proof of
contacting a representative or posting pro-carbon-tax message within 24 h.

EEO59 (Bias/Reflective Thinking): 3-min ≥100-word letter to future generations on
climate policy vs reading neutral text; outcome: $0–4 donation to Citizens’ Climate
Lobby.
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Supplement: Examples of Studies cont’d Back to Procedure

YQH52 (Info): 150s carbon-pricing video vs 22s intro-only video; outcome: index of
petition signing plus $0–20 lottery-based donation pledge to Climate Leadership
Council.

IGA07 (Strategic decision making): 5-round consumption game with 50% carbon tax
+ equal dividend vs untaxed game; outcome: percentage of earnings donated to the
International Carbon Action Partnership.
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